Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.10671
Cited By
Explaining Deep Learning Models with Constrained Adversarial Examples
25 June 2019
J. Moore
Nils Y. Hammerla
C. Watkins
AAML
GAN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explaining Deep Learning Models with Constrained Adversarial Examples"
12 / 12 papers shown
Title
Visual Interpretability for Deep Learning: a Survey
Quanshi Zhang
Song-Chun Zhu
FaML
HAI
142
821
0
02 Feb 2018
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
91
1,097
0
27 Dec 2017
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
127
2,361
0
01 Nov 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
250
4,273
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,018
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,881
0
10 Apr 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
545
5,910
0
08 Jul 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,033
0
16 Feb 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
75
3,682
0
08 Feb 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,121
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
282
14,963
1
21 Dec 2013
1