ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.10655
  4. Cited By
Complexity of Highly Parallel Non-Smooth Convex Optimization

Complexity of Highly Parallel Non-Smooth Convex Optimization

25 June 2019
Sébastien Bubeck
Qijia Jiang
Y. Lee
Yuanzhi Li
Aaron Sidford
ArXivPDFHTML

Papers citing "Complexity of Highly Parallel Non-Smooth Convex Optimization"

12 / 12 papers shown
Title
The Sample Complexity of Gradient Descent in Stochastic Convex
  Optimization
The Sample Complexity of Gradient Descent in Stochastic Convex Optimization
Roi Livni
MLT
37
1
0
07 Apr 2024
Memory-Query Tradeoffs for Randomized Convex Optimization
Memory-Query Tradeoffs for Randomized Convex Optimization
Xinyu Chen
Binghui Peng
36
6
0
21 Jun 2023
ReSQueing Parallel and Private Stochastic Convex Optimization
ReSQueing Parallel and Private Stochastic Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Y. Lee
Daogao Liu
Aaron Sidford
Kevin Tian
FedML
22
12
0
01 Jan 2023
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
50
11
0
17 Jun 2022
Efficient Convex Optimization Requires Superlinear Memory
Efficient Convex Optimization Requires Superlinear Memory
A. Marsden
Vatsal Sharan
Aaron Sidford
Gregory Valiant
29
14
0
29 Mar 2022
Near-Optimal Lower Bounds For Convex Optimization For All Orders of
  Smoothness
Near-Optimal Lower Bounds For Convex Optimization For All Orders of Smoothness
A. Garg
Robin Kothari
Praneeth Netrapalli
Suhail Sherif
19
13
0
02 Dec 2021
Robust Regression Revisited: Acceleration and Improved Estimation Rates
Robust Regression Revisited: Acceleration and Improved Estimation Rates
A. Jambulapati
J. Li
T. Schramm
Kevin Tian
AAML
32
17
0
22 Jun 2021
Stochastic Bias-Reduced Gradient Methods
Stochastic Bias-Reduced Gradient Methods
Hilal Asi
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
21
29
0
17 Jun 2021
Concentration of Non-Isotropic Random Tensors with Applications to Learning and Empirical Risk Minimization
Concentration of Non-Isotropic Random Tensors with Applications to Learning and Empirical Risk Minimization
Mathieu Even
Laurent Massoulié
18
14
0
04 Feb 2021
Higher-order methods for convex-concave min-max optimization and
  monotone variational inequalities
Higher-order methods for convex-concave min-max optimization and monotone variational inequalities
Brian Bullins
Kevin A. Lai
27
36
0
09 Jul 2020
Lower Bounds for Parallel and Randomized Convex Optimization
Lower Bounds for Parallel and Randomized Convex Optimization
Jelena Diakonikolas
Cristóbal Guzmán
30
44
0
05 Nov 2018
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
177
683
0
07 Dec 2010
1