Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.09293
Cited By
Generating Counterfactual and Contrastive Explanations using SHAP
21 June 2019
Shubham Rathi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generating Counterfactual and Contrastive Explanations using SHAP"
17 / 17 papers shown
Title
Rectifying Group Irregularities in Explanations for Distribution Shift
Adam Stein
Yinjun Wu
Eric Wong
Mayur Naik
37
1
0
25 May 2023
CEnt: An Entropy-based Model-agnostic Explainability Framework to Contrast Classifiers' Decisions
Julia El Zini
Mohamad Mansour
M. Awad
33
1
0
19 Jan 2023
MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation
Wenzhuo Yang
Jia Li
Caiming Xiong
Guosheng Lin
CML
35
13
0
31 May 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
38
78
0
06 May 2022
Interpretation of Black Box NLP Models: A Survey
Shivani Choudhary
N. Chatterjee
S. K. Saha
FAtt
34
10
0
31 Mar 2022
Causal versus Marginal Shapley Values for Robotic Lever Manipulation Controlled using Deep Reinforcement Learning
Sindre Benjamin Remman
Inga Strümke
A. Lekkas
CML
15
7
0
04 Nov 2021
Counterfactual Shapley Additive Explanations
Emanuele Albini
Jason Long
Danial Dervovic
Daniele Magazzeni
26
49
0
27 Oct 2021
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey
Richard Dazeley
Peter Vamplew
Francisco Cruz
32
59
0
20 Aug 2021
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
Raphael Mazzine
David Martens
40
33
0
09 Jul 2021
Evaluating the Correctness of Explainable AI Algorithms for Classification
Orcun Yalcin
Xiuyi Fan
Siyuan Liu
XAI
FAtt
16
15
0
20 May 2021
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
Contrastive Explanations for Model Interpretability
Alon Jacovi
Swabha Swayamdipta
Shauli Ravfogel
Yanai Elazar
Yejin Choi
Yoav Goldberg
44
95
0
02 Mar 2021
Explainability of deep vision-based autonomous driving systems: Review and challenges
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
48
170
0
13 Jan 2021
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
162
0
20 Oct 2020
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
27
11
0
15 Sep 2020
SCOUT: Self-aware Discriminant Counterfactual Explanations
Pei Wang
Nuno Vasconcelos
FAtt
30
81
0
16 Apr 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
27
213
0
09 Mar 2020
1