ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.09293
  4. Cited By
Generating Counterfactual and Contrastive Explanations using SHAP

Generating Counterfactual and Contrastive Explanations using SHAP

21 June 2019
Shubham Rathi
ArXivPDFHTML

Papers citing "Generating Counterfactual and Contrastive Explanations using SHAP"

17 / 17 papers shown
Title
Rectifying Group Irregularities in Explanations for Distribution Shift
Rectifying Group Irregularities in Explanations for Distribution Shift
Adam Stein
Yinjun Wu
Eric Wong
Mayur Naik
37
1
0
25 May 2023
CEnt: An Entropy-based Model-agnostic Explainability Framework to
  Contrast Classifiers' Decisions
CEnt: An Entropy-based Model-agnostic Explainability Framework to Contrast Classifiers' Decisions
Julia El Zini
Mohamad Mansour
M. Awad
33
1
0
19 Jan 2023
MACE: An Efficient Model-Agnostic Framework for Counterfactual
  Explanation
MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation
Wenzhuo Yang
Jia Li
Caiming Xiong
Guosheng Lin
CML
35
13
0
31 May 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of
  Explanations
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
38
78
0
06 May 2022
Interpretation of Black Box NLP Models: A Survey
Interpretation of Black Box NLP Models: A Survey
Shivani Choudhary
N. Chatterjee
S. K. Saha
FAtt
34
10
0
31 Mar 2022
Causal versus Marginal Shapley Values for Robotic Lever Manipulation
  Controlled using Deep Reinforcement Learning
Causal versus Marginal Shapley Values for Robotic Lever Manipulation Controlled using Deep Reinforcement Learning
Sindre Benjamin Remman
Inga Strümke
A. Lekkas
CML
15
7
0
04 Nov 2021
Counterfactual Shapley Additive Explanations
Counterfactual Shapley Additive Explanations
Emanuele Albini
Jason Long
Danial Dervovic
Daniele Magazzeni
26
49
0
27 Oct 2021
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
  and Survey
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey
Richard Dazeley
Peter Vamplew
Francisco Cruz
32
59
0
20 Aug 2021
A Framework and Benchmarking Study for Counterfactual Generating Methods
  on Tabular Data
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
Raphael Mazzine
David Martens
40
33
0
09 Jul 2021
Evaluating the Correctness of Explainable AI Algorithms for
  Classification
Evaluating the Correctness of Explainable AI Algorithms for Classification
Orcun Yalcin
Xiuyi Fan
Siyuan Liu
XAI
FAtt
16
15
0
20 May 2021
Counterfactuals and Causability in Explainable Artificial Intelligence:
  Theory, Algorithms, and Applications
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
Contrastive Explanations for Model Interpretability
Contrastive Explanations for Model Interpretability
Alon Jacovi
Swabha Swayamdipta
Shauli Ravfogel
Yanai Elazar
Yejin Choi
Yoav Goldberg
44
95
0
02 Mar 2021
Explainability of deep vision-based autonomous driving systems: Review
  and challenges
Explainability of deep vision-based autonomous driving systems: Review and challenges
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
48
170
0
13 Jan 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
162
0
20 Oct 2020
Beyond Individualized Recourse: Interpretable and Interactive Summaries
  of Actionable Recourses
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
27
11
0
15 Sep 2020
SCOUT: Self-aware Discriminant Counterfactual Explanations
SCOUT: Self-aware Discriminant Counterfactual Explanations
Pei Wang
Nuno Vasconcelos
FAtt
30
81
0
16 Apr 2020
Causal Interpretability for Machine Learning -- Problems, Methods and
  Evaluation
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
27
213
0
09 Mar 2020
1