Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.08935
Cited By
Deep Leakage from Gradients
21 June 2019
Ligeng Zhu
Zhijian Liu
Song Han
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Leakage from Gradients"
18 / 368 papers shown
Title
Learn distributed GAN with Temporary Discriminators
Hui Qu
Yikai Zhang
Qi Chang
Zhennan Yan
Chao Chen
Dimitris N. Metaxas
FedML
21
16
0
17 Jul 2020
Data Poisoning Attacks Against Federated Learning Systems
Vale Tolpegin
Stacey Truex
Mehmet Emre Gursoy
Ling Liu
FedML
28
639
0
16 Jul 2020
A Survey of Privacy Attacks in Machine Learning
M. Rigaki
Sebastian Garcia
PILM
AAML
39
213
0
15 Jul 2020
Quality Inference in Federated Learning with Secure Aggregation
Balázs Pejó
G. Biczók
FedML
21
22
0
13 Jul 2020
Differentially private cross-silo federated learning
Mikko A. Heikkilä
A. Koskela
Kana Shimizu
Samuel Kaski
Antti Honkela
FedML
29
24
0
10 Jul 2020
Gradient-EM Bayesian Meta-learning
Yayi Zou
Xiaoqi Lu
BDL
33
16
0
21 Jun 2020
Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks
Lixin Fan
Kam Woh Ng
Ce Ju
Tianyu Zhang
Chang Liu
Chee Seng Chan
Qiang Yang
MIACV
17
63
0
20 Jun 2020
Topology-aware Differential Privacy for Decentralized Image Classification
Shangwei Guo
Tianwei Zhang
Guowen Xu
Hanzhou Yu
Tao Xiang
Yang Liu
22
18
0
14 Jun 2020
Dataset Condensation with Gradient Matching
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
36
477
0
10 Jun 2020
Secure Byzantine-Robust Machine Learning
Lie He
Sai Praneeth Karimireddy
Martin Jaggi
OOD
18
58
0
08 Jun 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
73
25
0
27 Apr 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
26
8
0
23 Apr 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
60
50
0
01 Apr 2020
User-Level Privacy-Preserving Federated Learning: Analysis and Performance Optimization
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Hang Su
Bo-Wen Zhang
H. Vincent Poor
FedML
25
11
0
29 Feb 2020
Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees
Richeng Jin
Yufan Huang
Xiaofan He
H. Dai
Tianfu Wu
FedML
22
63
0
25 Feb 2020
Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
27
289
0
11 Feb 2020
Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and Domain Adaptation: ABIDE Results
Xiaoxiao Li
Yufeng Gu
Nicha Dvornek
Lawrence H. Staib
P. Ventola
James S. Duncan
FedML
OOD
18
353
0
16 Jan 2020
Secure Federated Submodel Learning
Chaoyue Niu
Fan Wu
Shaojie Tang
Lifeng Hua
Rongfei Jia
Chengfei Lv
Zhihua Wu
Guihai Chen
FedML
14
30
0
06 Nov 2019
Previous
1
2
3
4
5
6
7
8