ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.08859
  4. Cited By
Closing the Accuracy Gap in an Event-Based Visual Recognition Task

Closing the Accuracy Gap in an Event-Based Visual Recognition Task

6 May 2019
Bodo Rückauer
Nicolas Känzig
Shih-Chii Liu
T. Delbruck
Yulia Sandamirskaya
ArXivPDFHTML

Papers citing "Closing the Accuracy Gap in an Event-Based Visual Recognition Task"

7 / 7 papers shown
Title
Neuromorphic Deep Learning Machines
Neuromorphic Deep Learning Machines
Emre Neftci
C. Augustine
Somnath Paul
Georgios Detorakis
BDL
147
258
0
16 Dec 2016
Aggressive Quadrotor Flight through Narrow Gaps with Onboard Sensing and
  Computing using Active Vision
Aggressive Quadrotor Flight through Narrow Gaps with Onboard Sensing and Computing using Active Vision
Davide Falanga
Elias Mueggler
Matthias Faessler
Davide Scaramuzza
20
178
0
01 Dec 2016
The Event-Camera Dataset and Simulator: Event-based Data for Pose
  Estimation, Visual Odometry, and SLAM
The Event-Camera Dataset and Simulator: Event-based Data for Pose Estimation, Visual Odometry, and SLAM
Elias Mueggler
Henri Rebecq
Guillermo Gallego
T. Delbruck
Davide Scaramuzza
VGen
69
595
0
26 Oct 2016
Fast and Efficient Asynchronous Neural Computation with Adapting Spiking
  Neural Networks
Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks
Davide Zambrano
S. Bohté
28
43
0
07 Sep 2016
Training Deep Spiking Neural Networks using Backpropagation
Training Deep Spiking Neural Networks using Backpropagation
Junhaeng Lee
T. Delbruck
Michael Pfeiffer
62
940
0
31 Aug 2016
Steering a Predator Robot using a Mixed Frame/Event-Driven Convolutional
  Neural Network
Steering a Predator Robot using a Mixed Frame/Event-Driven Convolutional Neural Network
Diederik Paul Moeys
Federico Corradi
E. Kerr
P. Vance
Gautham P. Das
Daniel Neil
D. Kerr
T. Delbruck
46
116
0
30 Jun 2016
Conversion of Artificial Recurrent Neural Networks to Spiking Neural
  Networks for Low-power Neuromorphic Hardware
Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low-power Neuromorphic Hardware
P. U. Diehl
Guido Zarrella
A. Cassidy
Bruno U. Pedroni
Emre Neftci
51
217
0
16 Jan 2016
1