Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.08635
Cited By
Energy Models for Better Pseudo-Labels: Improving Semi-Supervised Classification with the 1-Laplacian Graph Energy
20 June 2019
Angelica I. Aviles-Rivero
Nicolas Papadakis
Ruoteng Li
P. Sellars
Samar M. Alsaleh
R. Tan
Carola-Bibiane Schönlieb
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Energy Models for Better Pseudo-Labels: Improving Semi-Supervised Classification with the 1-Laplacian Graph Energy"
6 / 6 papers shown
Title
NorMatch: Matching Normalizing Flows with Discriminative Classifiers for Semi-Supervised Learning
Zhongying Deng
Rihuan Ke
Carola-Bibiane Schonlieb
Angelica I Aviles-Rivero
17
0
0
17 Nov 2022
LaplaceNet: A Hybrid Graph-Energy Neural Network for Deep Semi-Supervised Classification
P. Sellars
Angelica I. Aviles-Rivero
Carola-Bibiane Schönlieb
21
8
0
08 Jun 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
217
508
0
15 Jan 2021
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
267
3,369
0
09 Mar 2020
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Ben Athiwaratkun
Marc Finzi
Pavel Izmailov
A. Wilson
199
243
0
14 Jun 2018
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
261
1,275
0
06 Mar 2017
1