ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.08619
  4. Cited By
Bayesian Modelling in Practice: Using Uncertainty to Improve
  Trustworthiness in Medical Applications

Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications

20 June 2019
David Ruhe
Giovanni Cina
Michele Tonutti
D. D. Bruin
Paul Elbers
    OOD
ArXivPDFHTML

Papers citing "Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications"

8 / 8 papers shown
Title
U2-Net: A Bayesian U-Net model with epistemic uncertainty feedback for
  photoreceptor layer segmentation in pathological OCT scans
U2-Net: A Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological OCT scans
J. Orlando
Philipp Seeböck
Hrvoje Bogunović
S. Klimscha
C. Grechenig
S. Waldstein
Bianca S. Gerendas
U. Schmidt-Erfurth
UQCV
31
56
0
23 Jan 2019
Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis
  Lesion Detection and Segmentation
Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
T. Nair
Doina Precup
Douglas L. Arnold
Tal Arbel
UQCV
58
445
0
03 Aug 2018
Aleatoric uncertainty estimation with test-time augmentation for medical
  image segmentation with convolutional neural networks
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Guotai Wang
Wenqi Li
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Vercauteren
UQCV
MedIm
OOD
143
592
0
19 Jul 2018
Deep Reinforcement Learning for Sepsis Treatment
Deep Reinforcement Learning for Sepsis Treatment
Aniruddh Raghu
Matthieu Komorowski
Imran Ahmed
Leo Anthony Celi
Peter Szolovits
Marzyeh Ghassemi
OffRL
57
172
0
27 Nov 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
158
3,454
0
07 Oct 2016
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
185
1,887
0
20 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,115
0
22 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
169
3,271
0
05 Dec 2014
1