ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.08283
  4. Cited By
Minimum Stein Discrepancy Estimators

Minimum Stein Discrepancy Estimators

19 June 2019
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
ArXivPDFHTML

Papers citing "Minimum Stein Discrepancy Estimators"

27 / 27 papers shown
Title
A Dictionary of Closed-Form Kernel Mean Embeddings
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
78
1
0
26 Apr 2025
On the Robustness of Kernel Goodness-of-Fit Tests
On the Robustness of Kernel Goodness-of-Fit Tests
Xing Liu
F. Briol
OOD
75
4
0
11 Aug 2024
Informed Correctors for Discrete Diffusion Models
Informed Correctors for Discrete Diffusion Models
Yixiu Zhao
Jiaxin Shi
Lester W. Mackey
Scott W. Linderman
Lester Mackey
Scott Linderman
44
9
0
30 Jul 2024
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
18
10
0
01 Nov 2023
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Xiaoda Qu
Xiran Fan
B. Vemuri
32
0
0
21 May 2023
Robust and Scalable Bayesian Online Changepoint Detection
Robust and Scalable Bayesian Online Changepoint Detection
Matias Altamirano
F. Briol
Jeremias Knoblauch
25
12
0
09 Feb 2023
Minimum Kernel Discrepancy Estimators
Minimum Kernel Discrepancy Estimators
Chris J. Oates
24
10
0
28 Oct 2022
A kernel Stein test of goodness of fit for sequential models
A kernel Stein test of goodness of fit for sequential models
Jerome Baum
Heishiro Kanagawa
A. Gretton
21
9
0
19 Oct 2022
Statistical Efficiency of Score Matching: The View from Isoperimetry
Statistical Efficiency of Score Matching: The View from Isoperimetry
Frederic Koehler
Alexander Heckett
Andrej Risteski
DiffM
102
50
0
03 Oct 2022
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
42
14
0
26 Sep 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
28
25
0
20 Mar 2022
Composite Goodness-of-fit Tests with Kernels
Composite Goodness-of-fit Tests with Kernels
Oscar Key
A. Gretton
F. Briol
T. Fernandez
24
14
0
19 Nov 2021
A Computationally Efficient Method for Learning Exponential Family
  Distributions
A Computationally Efficient Method for Learning Exponential Family Distributions
Abhin Shah
Devavrat Shah
G. Wornell
23
9
0
28 Oct 2021
Interpreting diffusion score matching using normalizing flow
Interpreting diffusion score matching using normalizing flow
Wenbo Gong
Yingzhen Li
DiffM
19
13
0
21 Jul 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
45
19
0
23 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on
  Kernel Stein Discrepancy Tests for Goodness-of-fit
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
32
4
0
23 Jun 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
G. Reinert
Yvik Swan
22
35
0
07 May 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
20
17
0
06 May 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
24
74
0
15 Apr 2021
Foundations of Bayesian Learning from Synthetic Data
Foundations of Bayesian Learning from Synthetic Data
H. Wilde
Jack Jewson
Sebastian J. Vollmer
Chris Holmes
17
15
0
16 Nov 2020
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient
  Flow
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
23
25
0
04 Nov 2020
Robust Bayesian Inference for Discrete Outcomes with the Total Variation
  Distance
Robust Bayesian Inference for Discrete Outcomes with the Total Variation Distance
Jeremias Knoblauch
Lara Vomfell
28
7
0
26 Oct 2020
Universal Robust Regression via Maximum Mean Discrepancy
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
38
15
0
01 Jun 2020
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
Fisher Efficient Inference of Intractable Models
Fisher Efficient Inference of Intractable Models
Song Liu
Takafumi Kanamori
Wittawat Jitkrittum
Yu Chen
21
14
0
18 May 2018
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
104
324
0
09 Feb 2016
1