Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.08149
Cited By
Efficient privacy preservation of big data for accurate data mining
19 June 2019
Pathum Chamikara Mahawaga Arachchige
P. Bertók
D. Liu
S. Çamtepe
I. Khalil
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient privacy preservation of big data for accurate data mining"
7 / 7 papers shown
Title
Gradients Stand-in for Defending Deep Leakage in Federated Learning
H. Yi
H. Ren
C. Hu
Y. Li
J. Deng
Xin Xie
FedML
35
0
0
11 Oct 2024
A Survey on Vulnerability of Federated Learning: A Learning Algorithm Perspective
Xianghua Xie
Chen Hu
Hanchi Ren
Jingjing Deng
FedML
AAML
53
19
0
27 Nov 2023
Gradient Leakage Defense with Key-Lock Module for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
Xiaoke Ma
Jianfeng Ma
FedML
37
2
0
06 May 2023
Digital Privacy Under Attack: Challenges and Enablers
Baobao Song
Mengyue Deng
Shiva Raj Pokhrel
Qiujun Lan
R. Doss
Gang Li
AAML
39
3
0
18 Feb 2023
PPaaS: Privacy Preservation as a Service
Pathum Chamikara Mahawaga Arachchige
P. Bertók
I. Khalil
Dongxi Liu
S. Çamtepe
27
9
0
04 Jul 2020
Privacy Preserving Face Recognition Utilizing Differential Privacy
Pathum Chamikara Mahawaga Arachchige
P. Bertók
I. Khalil
D. Liu
S. Çamtepe
PICV
50
117
0
21 May 2020
Local Differential Privacy for Deep Learning
Pathum Chamikara Mahawaga Arachchige
P. Bertók
I. Khalil
Dongxi Liu
S. Çamtepe
Mohammed Atiquzzaman
41
220
0
08 Aug 2019
1