Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.08034
Cited By
Disentangling feature and lazy training in deep neural networks
19 June 2019
Mario Geiger
S. Spigler
Arthur Jacot
Matthieu Wyart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Disentangling feature and lazy training in deep neural networks"
9 / 9 papers shown
Title
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
55
114
0
25 Sep 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
117
286
0
13 Feb 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
82
247
0
18 Jan 2019
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
Brady Neal
Sarthak Mittal
A. Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
80
169
0
19 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
192
1,270
0
04 Oct 2018
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
113
1,091
0
01 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
242
8,856
0
25 Aug 2017
Geometry of Optimization and Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Ruslan Salakhutdinov
Nathan Srebro
AI4CE
60
133
0
08 May 2017
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
306
7,971
0
23 May 2016
1