Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.06717
Cited By
MoËT: Mixture of Expert Trees and its Application to Verifiable Reinforcement Learning
16 June 2019
Marko Vasic
Andrija Petrović
Kaiyuan Wang
Mladen Nikolic
Rishabh Singh
S. Khurshid
OffRL
MoE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MoËT: Mixture of Expert Trees and its Application to Verifiable Reinforcement Learning"
24 / 24 papers shown
Title
Verified Probabilistic Policies for Deep Reinforcement Learning
E. Bacci
David Parker
36
4
0
10 Jan 2022
Explainable Deep Reinforcement Learning Using Introspection in a Non-episodic Task
Angel Ayala
Francisco Cruz
Bruno José Torres Fernandes
Richard Dazeley
27
6
0
18 Aug 2021
Towards Scalable Verification of Deep Reinforcement Learning
Guy Amir
Michael Schapira
Guy Katz
OffRL
36
46
0
25 May 2021
KnowRU: Knowledge Reusing via Knowledge Distillation in Multi-agent Reinforcement Learning
Zijian Gao
Kele Xu
Bo Ding
Huaimin Wang
Yiying Li
Hongda Jia
55
15
0
27 Mar 2021
Explainability in Deep Reinforcement Learning
Alexandre Heuillet
Fabien Couthouis
Natalia Díaz Rodríguez
XAI
79
279
0
15 Aug 2020
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
42
2,907
0
09 Jun 2020
Explainable Reinforcement Learning: A Survey
Erika Puiutta
Eric M. S. P. Veith
XAI
30
242
0
13 May 2020
An Inductive Synthesis Framework for Verifiable Reinforcement Learning
He Zhu
Zikang Xiong
Stephen Magill
Suresh Jagannathan
35
95
0
16 Jul 2019
Learning Causal State Representations of Partially Observable Environments
Amy Zhang
Zachary Chase Lipton
Luis Villaseñor-Pineda
Kamyar Azizzadenesheli
Anima Anandkumar
Laurent Itti
Joelle Pineau
Tommaso Furlanello
CML
45
49
0
25 Jun 2019
Explainable Machine Learning for Scientific Insights and Discoveries
R. Roscher
B. Bohn
Marco F. Duarte
Jochen Garcke
XAI
47
662
0
21 May 2019
Formal Verification of Input-Output Mappings of Tree Ensembles
John Törnblom
Simin Nadjm-Tehrani
31
36
0
10 May 2019
Hierarchical Routing Mixture of Experts
Wenbo Zhao
Yang Gao
Shahan Ali Memon
Bhiksha Raj
Rita Singh
MoE
18
4
0
18 Mar 2019
Learning Finite State Representations of Recurrent Policy Networks
Anurag Koul
S. Greydanus
Alan Fern
21
88
0
29 Nov 2018
Local Rule-Based Explanations of Black Box Decision Systems
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
101
436
0
28 May 2018
Verifiable Reinforcement Learning via Policy Extraction
Osbert Bastani
Yewen Pu
Armando Solar-Lezama
OffRL
104
331
0
22 May 2018
Born Again Neural Networks
Tommaso Furlanello
Zachary Chase Lipton
Michael Tschannen
Laurent Itti
Anima Anandkumar
49
1,030
0
12 May 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
69
3,922
0
06 Feb 2018
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
334
3,742
0
28 Feb 2017
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
78
3,672
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
338
16,765
0
16 Feb 2016
Dueling Network Architectures for Deep Reinforcement Learning
Ziyun Wang
Tom Schaul
Matteo Hessel
H. V. Hasselt
Marc Lanctot
Nando de Freitas
OffRL
52
3,742
0
20 Nov 2015
Policy Distillation
Andrei A. Rusu
Sergio Gomez Colmenarejo
Çağlar Gülçehre
Guillaume Desjardins
J. Kirkpatrick
Razvan Pascanu
Volodymyr Mnih
Koray Kavukcuoglu
R. Hadsell
39
685
0
19 Nov 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
100
19,448
0
09 Mar 2015
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
OffRL
107
3,196
0
02 Nov 2010
1