ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.06593
  4. Cited By
Context is Key: Grammatical Error Detection with Contextual Word
  Representations

Context is Key: Grammatical Error Detection with Contextual Word Representations

15 June 2019
Samuel J. Bell
H. Yannakoudakis
Marek Rei
ArXivPDFHTML

Papers citing "Context is Key: Grammatical Error Detection with Contextual Word Representations"

10 / 10 papers shown
Title
LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations
LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations
Hadas Orgad
Michael Toker
Zorik Gekhman
Roi Reichart
Idan Szpektor
Hadas Kotek
Yonatan Belinkov
HILM
AIFin
61
32
0
03 Oct 2024
Oddballness: universal anomaly detection with language models
Oddballness: universal anomaly detection with language models
Filip Graliñski
Ryszard Staruch
Krzysztof Jurkiewicz
39
1
0
04 Sep 2024
Grammatical Error Correction: A Survey of the State of the Art
Grammatical Error Correction: A Survey of the State of the Art
Christopher Bryant
Zheng Yuan
Muhammad Reza Qorib
Hannan Cao
Hwee Tou Ng
Ted Briscoe
3DV
34
79
0
09 Nov 2022
Plug-Tagger: A Pluggable Sequence Labeling Framework Using Language
  Models
Plug-Tagger: A Pluggable Sequence Labeling Framework Using Language Models
Xin Zhou
Ruotian Ma
Tao Gui
Y. Tan
Qi Zhang
Xuanjing Huang
VLM
18
5
0
14 Oct 2021
Combining GCN and Transformer for Chinese Grammatical Error Detection
Combining GCN and Transformer for Chinese Grammatical Error Detection
Jinhong Zhang
29
6
0
19 May 2021
Improving BERT with Syntax-aware Local Attention
Improving BERT with Syntax-aware Local Attention
Zhongli Li
Qingyu Zhou
Chao Li
Ke Xu
Yunbo Cao
63
44
0
30 Dec 2020
Encoder-Decoder Models Can Benefit from Pre-trained Masked Language
  Models in Grammatical Error Correction
Encoder-Decoder Models Can Benefit from Pre-trained Masked Language Models in Grammatical Error Correction
Masahiro Kaneko
Masato Mita
Shun Kiyono
Jun Suzuki
Kentaro Inui
35
143
0
03 May 2020
Detecting Local Insights from Global Labels: Supervised & Zero-Shot
  Sequence Labeling via a Convolutional Decomposition
Detecting Local Insights from Global Labels: Supervised & Zero-Shot Sequence Labeling via a Convolutional Decomposition
A. Schmaltz
27
8
0
04 Jun 2019
Approaching Neural Grammatical Error Correction as a Low-Resource
  Machine Translation Task
Approaching Neural Grammatical Error Correction as a Low-Resource Machine Translation Task
Marcin Junczys-Dowmunt
Roman Grundkiewicz
Shubha Guha
Kenneth Heafield
33
192
0
16 Apr 2018
Attending to Characters in Neural Sequence Labeling Models
Attending to Characters in Neural Sequence Labeling Models
Marek Rei
Gamal K. O. Crichton
S. Pyysalo
49
187
0
14 Nov 2016
1