Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.06316
Cited By
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
14 June 2019
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Stable and Efficient Training of Verifiably Robust Neural Networks"
22 / 22 papers shown
Title
Towards Universal Certified Robustness with Multi-Norm Training
Enyi Jiang
Gagandeep Singh
Gagandeep Singh
AAML
89
1
0
03 Oct 2024
On Using Certified Training towards Empirical Robustness
Alessandro De Palma
Serge Durand
Zakaria Chihani
François Terrier
Caterina Urban
OOD
AAML
58
1
0
02 Oct 2024
CTBENCH: A Library and Benchmark for Certified Training
Yuhao Mao
Stefan Balauca
Martin Vechev
OOD
66
5
0
07 Jun 2024
Neural Network Verification with Branch-and-Bound for General Nonlinearities
Zhouxing Shi
Qirui Jin
Zico Kolter
Suman Jana
Cho-Jui Hsieh
Huan Zhang
64
14
0
31 May 2024
Probabilistic Verification of Neural Networks using Branch and Bound
David Boetius
Stefan Leue
Tobias Sutter
66
1
0
27 May 2024
AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
Antonio Emanuele Cinà
Jérôme Rony
Maura Pintor
Christian Scano
Ambra Demontis
Battista Biggio
Ismail Ben Ayed
Fabio Roli
ELM
AAML
SILM
75
9
0
30 Apr 2024
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
129
1
0
13 Mar 2024
Accelerated Smoothing: A Scalable Approach to Randomized Smoothing
Devansh Bhardwaj
Kshitiz Kaushik
Sarthak Gupta
AAML
53
0
0
12 Feb 2024
Is Adversarial Training with Compressed Datasets Effective?
Tong Chen
Raghavendra Selvan
AAML
105
0
0
08 Feb 2024
Set-Based Training for Neural Network Verification
Lukas Koller
Tobias Ladner
Matthias Althoff
AAML
67
2
0
26 Jan 2024
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
117
36
0
29 Apr 2023
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
99
2,018
0
08 Feb 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
51
145
0
15 Jan 2019
Verification of deep probabilistic models
Krishnamurthy Dvijotham
M. Garnelo
Alhussein Fawzi
Pushmeet Kohli
34
23
0
06 Dec 2018
Distributionally Adversarial Attack
T. Zheng
Changyou Chen
K. Ren
OOD
72
121
0
16 Aug 2018
Structured Adversarial Attack: Towards General Implementation and Better Interpretability
Kaidi Xu
Sijia Liu
Pu Zhao
Pin-Yu Chen
Huan Zhang
Quanfu Fan
Deniz Erdogmus
Yanzhi Wang
Xinyu Lin
AAML
87
160
0
05 Aug 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
67
1,172
0
17 May 2018
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
76
689
0
25 Apr 2018
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
D. Song
AAML
66
242
0
15 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
103
1,851
0
20 May 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
290
1,849
0
03 Feb 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
448
3,124
0
04 Nov 2016
1