ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.06268
  4. Cited By
Variational Federated Multi-Task Learning

Variational Federated Multi-Task Learning

14 June 2019
Luca Corinzia
Ami Beuret
J. M. Buhmann
    FedML
ArXivPDFHTML

Papers citing "Variational Federated Multi-Task Learning"

33 / 33 papers shown
Title
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
98
3
0
16 Jan 2024
Knowledge transfer in deep block-modular neural networks
Knowledge transfer in deep block-modular neural networks
A. Terekhov
Guglielmo Montone
J. O'Regan
46
73
0
24 Jul 2019
Federated Collaborative Filtering for Privacy-Preserving Personalized
  Recommendation System
Federated Collaborative Filtering for Privacy-Preserving Personalized Recommendation System
Muhammad Ammad-ud-din
E. Ivannikova
Suleiman A. Khan
Were Oyomno
Qiang Fu
K. E. Tan
Adrian Flanagan
FedML
68
271
0
29 Jan 2019
Federated Optimization in Heterogeneous Networks
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
180
5,176
0
14 Dec 2018
Applied Federated Learning: Improving Google Keyboard Query Suggestions
Applied Federated Learning: Improving Google Keyboard Query Suggestions
Timothy Yang
Galen Andrew
Hubert Eichner
Haicheng Sun
Wei Li
Nicholas Kong
Daniel Ramage
F. Beaufays
FedML
87
623
0
07 Dec 2018
LEAF: A Benchmark for Federated Settings
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
134
1,419
0
03 Dec 2018
Communication-Efficient On-Device Machine Learning: Federated
  Distillation and Augmentation under Non-IID Private Data
Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data
Eunjeong Jeong
Seungeun Oh
Hyesung Kim
Jihong Park
M. Bennis
Seong-Lyun Kim
FedML
88
603
0
28 Nov 2018
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
46
56
0
27 Nov 2018
Memory Replay GANs: learning to generate images from new categories
  without forgetting
Memory Replay GANs: learning to generate images from new categories without forgetting
Chenshen Wu
Luis Herranz
Xialei Liu
Yaxing Wang
Joost van de Weijer
Bogdan Raducanu
CLL
VLM
GAN
49
195
0
06 Sep 2018
Federated Learning with Non-IID Data
Federated Learning with Non-IID Data
Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
FedML
152
2,568
0
02 Jun 2018
Progress & Compress: A scalable framework for continual learning
Progress & Compress: A scalable framework for continual learning
Jonathan Richard Schwarz
Jelena Luketina
Wojciech M. Czarnecki
A. Grabska-Barwinska
Yee Whye Teh
Razvan Pascanu
R. Hadsell
CLL
120
888
0
16 May 2018
Flipout: Efficient Pseudo-Independent Weight Perturbations on
  Mini-Batches
Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen
Paul Vicol
Jimmy Ba
Dustin Tran
Roger C. Grosse
BDL
47
311
0
12 Mar 2018
TensorFlow Distributions
TensorFlow Distributions
Joshua V. Dillon
I. Langmore
Dustin Tran
E. Brevdo
Srinivas Vasudevan
David A. Moore
Brian Patton
Alexander A. Alemi
Matt Hoffman
Rif A. Saurous
GP
96
351
0
28 Nov 2017
Variational Continual Learning
Variational Continual Learning
Cuong V Nguyen
Yingzhen Li
T. Bui
Richard Turner
CLL
VLM
BDL
79
732
0
29 Oct 2017
An Overview of Multi-Task Learning in Deep Neural Networks
An Overview of Multi-Task Learning in Deep Neural Networks
Sebastian Ruder
CVBM
146
2,826
0
15 Jun 2017
Federated Multi-Task Learning
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
150
1,808
0
30 May 2017
Overcoming Catastrophic Forgetting by Incremental Moment Matching
Overcoming Catastrophic Forgetting by Incremental Moment Matching
Sang-Woo Lee
Jin-Hwa Kim
Jaehyun Jun
Jung-Woo Ha
Byoung-Tak Zhang
CLL
70
676
0
24 Mar 2017
EMNIST: an extension of MNIST to handwritten letters
EMNIST: an extension of MNIST to handwritten letters
Gregory Cohen
Saeed Afshar
J. Tapson
André van Schaik
63
720
0
17 Feb 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
354
7,504
0
02 Dec 2016
CoCoA: A General Framework for Communication-Efficient Distributed
  Optimization
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith
Simone Forte
Chenxin Ma
Martin Takáč
Michael I. Jordan
Martin Jaggi
68
273
0
07 Nov 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
126
1,897
0
08 Oct 2016
Progressive Neural Networks
Progressive Neural Networks
Andrei A. Rusu
Neil C. Rabinowitz
Guillaume Desjardins
Hubert Soyer
J. Kirkpatrick
Koray Kavukcuoglu
Razvan Pascanu
R. Hadsell
CLL
AI4CE
77
2,446
0
15 Jun 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
429
18,350
0
27 May 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
394
17,453
0
17 Feb 2016
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
344
19,634
0
09 Mar 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
94
177
0
12 Feb 2015
Deep learning with Elastic Averaging SGD
Deep learning with Elastic Averaging SGD
Sixin Zhang
A. Choromańska
Yann LeCun
FedML
96
610
0
20 Dec 2014
Parallel training of DNNs with Natural Gradient and Parameter Averaging
Parallel training of DNNs with Natural Gradient and Parameter Averaging
Daniel Povey
Xiaohui Zhang
Sanjeev Khudanpur
FedML
83
251
0
27 Oct 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
84
353
0
04 Sep 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
450
16,940
0
20 Dec 2013
Network In Network
Network In Network
Min Lin
Qiang Chen
Shuicheng Yan
291
6,274
0
16 Dec 2013
Streaming Variational Bayes
Streaming Variational Bayes
Tamara Broderick
N. Boyd
Andre Wibisono
Ashia Wilson
Michael I. Jordan
80
345
0
25 Jul 2013
Expectation Propagation for approximate Bayesian inference
Expectation Propagation for approximate Bayesian inference
T. Minka
127
1,907
0
10 Jan 2013
1