ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.06188
  4. Cited By
Global and Local Interpretability for Cardiac MRI Classification

Global and Local Interpretability for Cardiac MRI Classification

14 June 2019
J. Clough
Ilkay Oksuz
Esther Puyol-Antón
B. Ruijsink
A. King
Julia A. Schnabel
ArXivPDFHTML

Papers citing "Global and Local Interpretability for Cardiac MRI Classification"

7 / 7 papers shown
Title
Stop Explaining Black Box Machine Learning Models for High Stakes
  Decisions and Use Interpretable Models Instead
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead
Cynthia Rudin
ELM
FaML
53
219
0
26 Nov 2018
Sanity Checks for Saliency Maps
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
132
1,966
0
08 Oct 2018
Learning Interpretable Anatomical Features Through Deep Generative
  Models: Application to Cardiac Remodeling
Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling
C. Biffi
Ozan Oktay
G. Tarroni
Wenjia Bai
A. de Marvao
...
R. Bedair
S. Prasad
S. Cook
D. O’Regan
Daniel Rueckert
MedIm
54
67
0
18 Jul 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
211
1,842
0
30 Nov 2017
Anatomically Constrained Neural Networks (ACNN): Application to Cardiac
  Image Enhancement and Segmentation
Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation
Ozan Oktay
Enzo Ferrante
Konstantinos Kamnitsas
M. Heinrich
Wenjia Bai
...
T. Dawes
D. O’Regan
Bernhard Kainz
Ben Glocker
Daniel Rueckert
54
657
0
22 May 2017
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,292
0
20 Dec 2013
1