ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.05828
  4. Cited By
Overcoming Mean-Field Approximations in Recurrent Gaussian Process
  Models

Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models

13 June 2019
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
ArXivPDFHTML

Papers citing "Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models"

23 / 23 papers shown
Title
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
54
0
0
24 Mar 2025
Recursive Gaussian Process State Space Model
Recursive Gaussian Process State Space Model
Tengjie Zheng
Lin Cheng
Shengping Gong
Xu Huang
74
0
0
22 Nov 2024
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field
  and Online Inference
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference
Zhidi Lin
Yiyong Sun
Feng Yin
Alexandre Thiéry
29
4
0
10 Dec 2023
Sampling-Free Probabilistic Deep State-Space Models
Sampling-Free Probabilistic Deep State-Space Models
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
16
2
0
15 Sep 2023
Out of Distribution Detection via Domain-Informed Gaussian Process State
  Space Models
Out of Distribution Detection via Domain-Informed Gaussian Process State Space Models
Alonso Marco
Elias Morley
Claire Tomlin
34
2
0
13 Sep 2023
Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
  Process State-Space Models
Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian Process State-Space Models
Zhidi Lin
Juan Maroñas
Ying Li
Feng Yin
Sergios Theodoridis
24
3
0
03 Sep 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
16
9
0
20 Feb 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space
  Model
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
34
7
0
21 Jan 2023
Towards AI-controlled FES-restoration of arm movements: Controlling for
  progressive muscular fatigue with Gaussian state-space models
Towards AI-controlled FES-restoration of arm movements: Controlling for progressive muscular fatigue with Gaussian state-space models
Nat Wannawas
Aldo A. Faisal
11
5
0
10 Jan 2023
Output-Dependent Gaussian Process State-Space Model
Output-Dependent Gaussian Process State-Space Model
Zhidi Lin
Lei Cheng
Feng Yin
Le Xu
Shuguang Cui
UQCV
41
5
0
15 Dec 2022
The Past Does Matter: Correlation of Subsequent States in Trajectory
  Predictions of Gaussian Process Models
The Past Does Matter: Correlation of Subsequent States in Trajectory Predictions of Gaussian Process Models
Steffen Ridderbusch
Sina Ober-Blobaum
Paul Goulart
24
2
0
20 Nov 2022
Recurrent Neural Networks and Universal Approximation of Bayesian
  Filters
Recurrent Neural Networks and Universal Approximation of Bayesian Filters
A. Bishop
Edwin V. Bonilla
BDL
29
3
0
01 Nov 2022
Continual Learning of Multi-modal Dynamics with External Memory
Continual Learning of Multi-modal Dynamics with External Memory
Abdullah Akgul
Gözde B. Ünal
M. Kandemir
CLL
19
0
0
02 Mar 2022
Traversing Time with Multi-Resolution Gaussian Process State-Space
  Models
Traversing Time with Multi-Resolution Gaussian Process State-Space Models
Krista Longi
J. Lindinger
Olaf Duennbier
M. Kandemir
Arto Klami
Barbara Rakitsch
16
3
0
06 Dec 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
28
1
0
02 Nov 2021
Inferring the Structure of Ordinary Differential Equations
Inferring the Structure of Ordinary Differential Equations
Juliane Weilbach
S. Gerwinn
Christian D. Weilbach
M. Kandemir
32
3
0
05 Jul 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
27
16
0
21 Jun 2021
Deep Probabilistic Time Series Forecasting using Augmented Recurrent
  Input for Dynamic Systems
Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems
Haitao Liu
Changjun Liu
Xiaomo Jiang
Xudong Chen
Shuhua Yang
Xiaofang Wang
BDL
AI4TS
27
2
0
03 Jun 2021
Structure-preserving Gaussian Process Dynamics
Structure-preserving Gaussian Process Dynamics
K. Ensinger
Friedrich Solowjow
Sebastian Ziesche
Michael Tiemann
Sebastian Trimpe
37
9
0
02 Feb 2021
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Stochastic embeddings of dynamical phenomena through variational
  autoencoders
Stochastic embeddings of dynamical phenomena through variational autoencoders
C. A. García
P. Félix
J. Presedo
A. Otero
BDL
19
2
0
13 Oct 2020
On Simulation and Trajectory Prediction with Gaussian Process Dynamics
On Simulation and Trajectory Prediction with Gaussian Process Dynamics
Lukas Hewing
Elena Arcari
Lukas P. Frohlich
M. Zeilinger
17
35
0
23 Dec 2019
Structured Variational Inference in Unstable Gaussian Process State
  Space Models
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
17
4
0
16 Jul 2019
1