Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.05828
Cited By
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
13 June 2019
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models"
23 / 23 papers shown
Title
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
54
0
0
24 Mar 2025
Recursive Gaussian Process State Space Model
Tengjie Zheng
Lin Cheng
Shengping Gong
Xu Huang
74
0
0
22 Nov 2024
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference
Zhidi Lin
Yiyong Sun
Feng Yin
Alexandre Thiéry
29
4
0
10 Dec 2023
Sampling-Free Probabilistic Deep State-Space Models
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
16
2
0
15 Sep 2023
Out of Distribution Detection via Domain-Informed Gaussian Process State Space Models
Alonso Marco
Elias Morley
Claire Tomlin
34
2
0
13 Sep 2023
Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian Process State-Space Models
Zhidi Lin
Juan Maroñas
Ying Li
Feng Yin
Sergios Theodoridis
24
3
0
03 Sep 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
16
9
0
20 Feb 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
34
7
0
21 Jan 2023
Towards AI-controlled FES-restoration of arm movements: Controlling for progressive muscular fatigue with Gaussian state-space models
Nat Wannawas
Aldo A. Faisal
11
5
0
10 Jan 2023
Output-Dependent Gaussian Process State-Space Model
Zhidi Lin
Lei Cheng
Feng Yin
Le Xu
Shuguang Cui
UQCV
41
5
0
15 Dec 2022
The Past Does Matter: Correlation of Subsequent States in Trajectory Predictions of Gaussian Process Models
Steffen Ridderbusch
Sina Ober-Blobaum
Paul Goulart
24
2
0
20 Nov 2022
Recurrent Neural Networks and Universal Approximation of Bayesian Filters
A. Bishop
Edwin V. Bonilla
BDL
29
3
0
01 Nov 2022
Continual Learning of Multi-modal Dynamics with External Memory
Abdullah Akgul
Gözde B. Ünal
M. Kandemir
CLL
19
0
0
02 Mar 2022
Traversing Time with Multi-Resolution Gaussian Process State-Space Models
Krista Longi
J. Lindinger
Olaf Duennbier
M. Kandemir
Arto Klami
Barbara Rakitsch
16
3
0
06 Dec 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
28
1
0
02 Nov 2021
Inferring the Structure of Ordinary Differential Equations
Juliane Weilbach
S. Gerwinn
Christian D. Weilbach
M. Kandemir
32
3
0
05 Jul 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
27
16
0
21 Jun 2021
Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems
Haitao Liu
Changjun Liu
Xiaomo Jiang
Xudong Chen
Shuhua Yang
Xiaofang Wang
BDL
AI4TS
27
2
0
03 Jun 2021
Structure-preserving Gaussian Process Dynamics
K. Ensinger
Friedrich Solowjow
Sebastian Ziesche
Michael Tiemann
Sebastian Trimpe
37
9
0
02 Feb 2021
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Stochastic embeddings of dynamical phenomena through variational autoencoders
C. A. García
P. Félix
J. Presedo
A. Otero
BDL
19
2
0
13 Oct 2020
On Simulation and Trajectory Prediction with Gaussian Process Dynamics
Lukas Hewing
Elena Arcari
Lukas P. Frohlich
M. Zeilinger
17
35
0
23 Dec 2019
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
17
4
0
16 Jul 2019
1