Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.05082
Cited By
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification
12 June 2019
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification"
9 / 59 papers shown
Title
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference
Disi Ji
Padhraic Smyth
M. Steyvers
39
45
0
19 Oct 2020
Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce Discrimination
Tao Zhang
Tianqing Zhu
Jing Li
Mengde Han
Wanlei Zhou
Philip S. Yu
FaML
37
49
0
25 Sep 2020
Fairness Constraints in Semi-supervised Learning
Tao Zhang
Tianqing Zhu
Mengde Han
Jing Li
Wanlei Zhou
Philip S. Yu
FaML
6
7
0
14 Sep 2020
Addressing Fairness in Classification with a Model-Agnostic Multi-Objective Algorithm
Kirtan Padh
Diego Antognini
Emma Lejal Glaude
Boi Faltings
C. Musat
FaML
24
30
0
09 Sep 2020
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
FR-Train: A Mutual Information-Based Approach to Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
24
78
0
24 Feb 2020
Optimized Score Transformation for Consistent Fair Classification
Dennis L. Wei
Karthikeyan N. Ramamurthy
Flavio du Pin Calmon
24
15
0
31 May 2019
A statistical framework for fair predictive algorithms
K. Lum
J. Johndrow
FaML
179
105
0
25 Oct 2016
High-dimensional generalized linear models and the lasso
Sara van de Geer
201
749
0
04 Apr 2008
Previous
1
2