ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.04450
  4. Cited By
Quantifying Intrinsic Uncertainty in Classification via Deep Dirichlet
  Mixture Networks

Quantifying Intrinsic Uncertainty in Classification via Deep Dirichlet Mixture Networks

11 June 2019
Qingyang Wu
He Li
Lexin Li
Zhou Yu
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Quantifying Intrinsic Uncertainty in Classification via Deep Dirichlet Mixture Networks"

3 / 3 papers shown
Title
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
66
1,115
0
07 Jul 2021
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
30
58
0
19 Feb 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
289
9,167
0
06 Jun 2015
1