Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.04370
Cited By
Maximum Mean Discrepancy Gradient Flow
11 June 2019
Michael Arbel
Anna Korba
Adil Salim
A. Gretton
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Maximum Mean Discrepancy Gradient Flow"
30 / 30 papers shown
Title
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
78
1
0
26 Apr 2025
Ultra-fast feature learning for the training of two-layer neural networks in the two-timescale regime
Raphael Barboni
Gabriel Peyré
François-Xavier Vialard
MLT
34
0
0
25 Apr 2025
Flow Matching Ergodic Coverage
Max Muchen Sun
Allison Pinosky
Todd Murphey
42
0
0
24 Apr 2025
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
Jonathan Geuter
Clément Bonet
Anna Korba
David Alvarez-Melis
61
0
0
03 Mar 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
53
2
0
08 Jan 2025
Fast Summation of Radial Kernels via QMC Slicing
Johannes Hertrich
Tim Jahn
Michael Quellmalz
26
5
0
02 Oct 2024
Particle Semi-Implicit Variational Inference
Jen Ning Lim
A. M. Johansen
48
3
0
30 Jun 2024
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
40
8
0
10 May 2024
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational Inference Framework
Fangyikang Wang
Huminhao Zhu
Chao Zhang
Han Zhao
Hui Qian
24
5
0
27 Dec 2023
Mean-field underdamped Langevin dynamics and its spacetime discretization
Qiang Fu
Ashia Wilson
40
4
0
26 Dec 2023
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
24
2
0
13 Dec 2023
Estimation Beyond Data Reweighting: Kernel Method of Moments
Heiner Kremer
Yassine Nemmour
Bernhard Schölkopf
Jia-Jie Zhu
36
7
0
18 May 2023
The Score-Difference Flow for Implicit Generative Modeling
Romann M. Weber
DiffM
29
2
0
25 Apr 2023
Birth-death dynamics for sampling: Global convergence, approximations and their asymptotics
Yulong Lu
D. Slepčev
Lihan Wang
37
22
0
01 Nov 2022
Block-wise Training of Residual Networks via the Minimizing Movement Scheme
Skander Karkar
Ibrahim Ayed
Emmanuel de Bézenac
Patrick Gallinari
30
1
0
03 Oct 2022
Membership Inference Attacks via Adversarial Examples
Hamid Jalalzai
Elie Kadoche
Rémi Leluc
Vincent Plassier
AAML
FedML
MIACV
38
7
0
27 Jul 2022
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
21
1
0
21 Nov 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
34
21
0
21 Oct 2021
Dual Training of Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Marylou Gabrié
Joan Bruna
Eric Vanden-Eijnden
FedML
32
6
0
11 Jul 2021
Generalization Error of GAN from the Discriminator's Perspective
Hongkang Yang
Weinan E
GAN
40
13
0
08 Jul 2021
Deep Generative Learning via Schrödinger Bridge
Gefei Wang
Yuling Jiao
Qiang Xu
Yang Wang
Can Yang
DiffM
OT
23
92
0
19 Jun 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
A. Gretton
46
37
0
16 Jun 2021
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
31
26
0
10 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
53
0
01 Jun 2021
Kernel Stein Discrepancy Descent
Anna Korba
Pierre-Cyril Aubin-Frankowski
Szymon Majewski
Pierre Ablin
19
50
0
20 May 2021
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
27
22
0
25 Feb 2021
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
29
25
0
04 Nov 2020
Can Shallow Neural Networks Beat the Curse of Dimensionality? A mean field training perspective
Stephan Wojtowytsch
E. Weinan
MLT
26
48
0
21 May 2020
Statistical and Topological Properties of Sliced Probability Divergences
Kimia Nadjahi
Alain Durmus
Lénaïc Chizat
Soheil Kolouri
Shahin Shahrampour
Umut Simsekli
26
81
0
12 Mar 2020
Machine Learning from a Continuous Viewpoint
E. Weinan
Chao Ma
Lei Wu
23
102
0
30 Dec 2019
1