ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03663
  4. Cited By
Physics-Informed Probabilistic Learning of Linear Embeddings of
  Non-linear Dynamics With Guaranteed Stability
v1v2v3v4v5 (latest)

Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability

9 June 2019
Shaowu Pan
Karthik Duraisamy
ArXiv (abs)PDFHTML

Papers citing "Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability"

29 / 29 papers shown
Title
Physics-Informed Neural Networks for Enhanced Interface Preservation in Lattice Boltzmann Multiphase Simulations
Physics-Informed Neural Networks for Enhanced Interface Preservation in Lattice Boltzmann Multiphase Simulations
Yue Li
L. Zhang
AI4CE
52
1
0
13 Apr 2025
CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
Chuanqi Chen
Nan Chen
Yinling Zhang
Jin-Long Wu
AI4CE
73
2
0
26 Oct 2024
Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder
Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder
Priyam Gupta
Peter J. Schmid
D. Sipp
T. Sayadi
Georgios Rigas
72
5
0
16 Oct 2023
Forecasting Sequential Data using Consistent Koopman Autoencoders
Forecasting Sequential Data using Consistent Koopman Autoencoders
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TSAI4CE
163
150
0
04 Mar 2020
Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction
Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction
N. Benjamin Erichson
Michael Muehlebach
Michael W. Mahoney
AI4CEPINN
71
141
0
26 May 2019
Deep Variational Koopman Models: Inferring Koopman Observations for
  Uncertainty-Aware Dynamics Modeling and Control
Deep Variational Koopman Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control
Jeremy Morton
F. Witherden
Mykel J Kochenderfer
54
47
0
26 Feb 2019
AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks
AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks
B. Chang
Minmin Chen
E. Haber
Ed H. Chi
PINNGNN
110
207
0
26 Feb 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINNAI4CE
108
868
0
18 Jan 2019
Stein Variational Gradient Descent as Moment Matching
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
85
38
0
27 Oct 2018
Scaling limit of the Stein variational gradient descent: the mean field
  regime
Scaling limit of the Stein variational gradient descent: the mean field regime
Jianfeng Lu
Yulong Lu
J. Nolen
59
80
0
10 May 2018
Data-driven Discovery of Closure Models
Data-driven Discovery of Closure Models
Shaowu Pan
Karthik Duraisamy
AI4CE
56
91
0
25 Mar 2018
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate
  Modeling and Uncertainty Quantification
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification
Yinhao Zhu
N. Zabaras
UQCVBDL
111
645
0
21 Jan 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
81
1,258
0
27 Dec 2017
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
Samuel E. Otto
C. Rowley
AI4CE
46
326
0
04 Dec 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
180
694
0
15 Nov 2017
Message Passing Stein Variational Gradient Descent
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
57
92
0
13 Nov 2017
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CEBDL
155
361
0
30 Oct 2017
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
49
373
0
12 Oct 2017
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
B. Chang
Lili Meng
E. Haber
Lars Ruthotto
David Begert
E. Holtham
AI4CE
83
264
0
12 Sep 2017
Learning Deep Neural Network Representations for Koopman Operators of
  Nonlinear Dynamical Systems
Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems
Enoch Yeung
Soumya Kundu
Nathan Oken Hodas
AI4CE
74
387
0
22 Aug 2017
Stable Architectures for Deep Neural Networks
Stable Architectures for Deep Neural Networks
E. Haber
Lars Ruthotto
147
733
0
09 May 2017
Edward: A library for probabilistic modeling, inference, and criticism
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
61
300
0
31 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
73
1,093
0
16 Aug 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
433
18,361
0
27 May 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
114
719
0
02 Mar 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
287
4,807
0
04 Jan 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCVBDL
192
1,892
0
20 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
1