Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.03663
Cited By
v1
v2
v3
v4
v5 (latest)
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
9 June 2019
Shaowu Pan
Karthik Duraisamy
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability"
29 / 29 papers shown
Title
Physics-Informed Neural Networks for Enhanced Interface Preservation in Lattice Boltzmann Multiphase Simulations
Yue Li
L. Zhang
AI4CE
52
1
0
13 Apr 2025
CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
Chuanqi Chen
Nan Chen
Yinling Zhang
Jin-Long Wu
AI4CE
73
2
0
26 Oct 2024
Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder
Priyam Gupta
Peter J. Schmid
D. Sipp
T. Sayadi
Georgios Rigas
72
5
0
16 Oct 2023
Forecasting Sequential Data using Consistent Koopman Autoencoders
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
163
150
0
04 Mar 2020
Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction
N. Benjamin Erichson
Michael Muehlebach
Michael W. Mahoney
AI4CE
PINN
71
141
0
26 May 2019
Deep Variational Koopman Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control
Jeremy Morton
F. Witherden
Mykel J Kochenderfer
54
47
0
26 Feb 2019
AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks
B. Chang
Minmin Chen
E. Haber
Ed H. Chi
PINN
GNN
110
207
0
26 Feb 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
108
868
0
18 Jan 2019
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
85
38
0
27 Oct 2018
Scaling limit of the Stein variational gradient descent: the mean field regime
Jianfeng Lu
Yulong Lu
J. Nolen
59
80
0
10 May 2018
Data-driven Discovery of Closure Models
Shaowu Pan
Karthik Duraisamy
AI4CE
56
91
0
25 Mar 2018
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification
Yinhao Zhu
N. Zabaras
UQCV
BDL
111
645
0
21 Jan 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
81
1,258
0
27 Dec 2017
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
Samuel E. Otto
C. Rowley
AI4CE
46
326
0
04 Dec 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
180
694
0
15 Nov 2017
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
57
92
0
13 Nov 2017
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
155
361
0
30 Oct 2017
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
49
373
0
12 Oct 2017
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
B. Chang
Lili Meng
E. Haber
Lars Ruthotto
David Begert
E. Holtham
AI4CE
83
264
0
12 Sep 2017
Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems
Enoch Yeung
Soumya Kundu
Nathan Oken Hodas
AI4CE
74
387
0
22 Aug 2017
Stable Architectures for Deep Neural Networks
E. Haber
Lars Ruthotto
147
733
0
09 May 2017
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
61
300
0
31 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
73
1,093
0
16 Aug 2016
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
433
18,361
0
27 May 2016
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
114
719
0
02 Mar 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
287
4,807
0
04 Jan 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
192
1,892
0
20 May 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
1