ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03644
  4. Cited By
The Implicit Metropolis-Hastings Algorithm

The Implicit Metropolis-Hastings Algorithm

9 June 2019
Kirill Neklyudov
Evgenii Egorov
Dmitry Vetrov
ArXiv (abs)PDFHTML

Papers citing "The Implicit Metropolis-Hastings Algorithm"

17 / 17 papers shown
Title
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
283
30,149
0
01 Mar 2022
Metropolis-Hastings Generative Adversarial Networks
Metropolis-Hastings Generative Adversarial Networks
Ryan D. Turner
Jane Hung
Eric Frank
Yunus Saatci
J. Yosinski
GAN
60
99
0
28 Nov 2018
Metropolis-Hastings view on variational inference and adversarial
  training
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
58
13
0
16 Oct 2018
Discriminator Rejection Sampling
Discriminator Rejection Sampling
S. Azadi
Catherine Olsson
Trevor Darrell
Ian Goodfellow
Augustus Odena
64
131
0
16 Oct 2018
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock
Jeff Donahue
Karen Simonyan
269
5,401
0
28 Sep 2018
Generative Image Inpainting with Contextual Attention
Generative Image Inpainting with Contextual Attention
Jiahui Yu
Zhe Lin
Jimei Yang
Xiaohui Shen
Xin Lu
Thomas S. Huang
GANDiffM
103
2,266
0
24 Jan 2018
A Note on the Inception Score
A Note on the Inception Score
Shane T. Barratt
Rishi Sharma
EGVM
99
694
0
06 Jan 2018
Do GANs actually learn the distribution? An empirical study
Do GANs actually learn the distribution? An empirical study
Sanjeev Arora
Yi Zhang
62
192
0
26 Jun 2017
MMD GAN: Towards Deeper Understanding of Moment Matching Network
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
66
724
0
24 May 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,558
0
31 Mar 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
172
4,827
0
26 Jan 2017
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
242
10,707
0
15 Sep 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
486
9,062
0
10 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
154
1,658
0
02 Jun 2016
Asynchrony begets Momentum, with an Application to Deep Learning
Asynchrony begets Momentum, with an Application to Deep Learning
Jeff Donahue
Philipp Krahenbuhl
Stefan Hadjis
Christopher Ré
92
142
0
31 May 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GANOOD
266
14,018
0
19 Nov 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
1