Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.03526
Cited By
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks
8 June 2019
Maksym Andriushchenko
Matthias Hein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks"
22 / 22 papers shown
Title
Interpretable Differencing of Machine Learning Models
Swagatam Haldar
Diptikalyan Saha
Dennis L. Wei
Rahul Nair
Elizabeth M. Daly
16
1
0
10 Jun 2023
Adversarial Robustness for Tabular Data through Cost and Utility Awareness
Klim Kireev
B. Kulynych
Carmela Troncoso
AAML
26
16
0
27 Aug 2022
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate Convolutional Neural Network Architecture From Truth Tables
Adrien Benamira
Tristan Guérand
Thomas Peyrin
Trevor Yap
Bryan Hooi
40
1
0
18 Aug 2022
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček
Matthias Hein
AAML
20
11
0
14 Jul 2022
Integrity Authentication in Tree Models
Weijie Zhao
Yingjie Lao
Ping Li
59
5
0
30 May 2022
(De-)Randomized Smoothing for Decision Stump Ensembles
Miklós Z. Horváth
Mark Niklas Muller
Marc Fischer
Martin Vechev
30
3
0
27 May 2022
Beyond Robustness: Resilience Verification of Tree-Based Classifiers
Stefano Calzavara
Lorenzo Cazzaro
Claudio Lucchese
Federico Marcuzzi
S. Orlando
AAML
43
9
0
05 Dec 2021
Robustness of Graph Neural Networks at Scale
Simon Geisler
Tobias Schmidt
Hakan cSirin
Daniel Zügner
Aleksandar Bojchevski
Stephan Günnemann
AAML
30
125
0
26 Oct 2021
Certifying Robustness to Programmable Data Bias in Decision Trees
Anna P. Meyer
Aws Albarghouthi
Loris Dántoni
27
21
0
08 Oct 2021
Being Properly Improper
Tyler Sypherd
Richard Nock
Lalitha Sankar
FaML
39
10
0
18 Jun 2021
A Review of Formal Methods applied to Machine Learning
Caterina Urban
Antoine Miné
39
55
0
06 Apr 2021
SoK: Privacy-Preserving Collaborative Tree-based Model Learning
Sylvain Chatel
Apostolos Pyrgelis
J. Troncoso-Pastoriza
Jean-Pierre Hubaux
17
14
0
16 Mar 2021
T-Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based Text Classification
A. Azizi
I. A. Tahmid
Asim Waheed
Neal Mangaokar
Jiameng Pu
M. Javed
Chandan K. Reddy
Bimal Viswanath
AAML
25
77
0
07 Mar 2021
A Multiclass Boosting Framework for Achieving Fast and Provable Adversarial Robustness
Jacob D. Abernethy
Pranjal Awasthi
Satyen Kale
AAML
27
6
0
01 Mar 2021
Connecting Interpretability and Robustness in Decision Trees through Separation
Michal Moshkovitz
Yao-Yuan Yang
Kamalika Chaudhuri
33
22
0
14 Feb 2021
Efficient Training of Robust Decision Trees Against Adversarial Examples
D. Vos
S. Verwer
AAML
6
36
0
18 Dec 2020
Not All Datasets Are Born Equal: On Heterogeneous Data and Adversarial Examples
Yael Mathov
Eden Levy
Ziv Katzir
A. Shabtai
Yuval Elovici
AAML
31
14
0
07 Oct 2020
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
33
128
0
09 Sep 2020
When are Non-Parametric Methods Robust?
Robi Bhattacharjee
Kamalika Chaudhuri
AAML
44
28
0
13 Mar 2020
Robustness for Non-Parametric Classification: A Generic Attack and Defense
Yao-Yuan Yang
Cyrus Rashtchian
Yizhen Wang
Kamalika Chaudhuri
SILM
AAML
34
42
0
07 Jun 2019
Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges
Rob Ashmore
R. Calinescu
Colin Paterson
AI4TS
27
116
0
10 May 2019
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,842
0
03 Feb 2017
1