Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.03499
Cited By
ML-LOO: Detecting Adversarial Examples with Feature Attribution
8 June 2019
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ML-LOO: Detecting Adversarial Examples with Feature Attribution"
50 / 59 papers shown
Title
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
58
451
0
27 Jan 2019
Guessing Smart: Biased Sampling for Efficient Black-Box Adversarial Attacks
T. Brunner
Frederik Diehl
Michael Truong-Le
Alois Knoll
MLAU
AAML
57
116
0
24 Dec 2018
Concise Explanations of Neural Networks using Adversarial Training
P. Chalasani
Jiefeng Chen
Aravind Sadagopan
S. Jha
Xi Wu
AAML
FAtt
104
13
0
15 Oct 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
62
171
0
01 Oct 2018
L-Shapley and C-Shapley: Efficient Model Interpretation for Structured Data
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
FAtt
TDI
107
214
0
08 Aug 2018
Prior Convictions: Black-Box Adversarial Attacks with Bandits and Priors
Andrew Ilyas
Logan Engstrom
Aleksander Madry
MLAU
AAML
87
375
0
20 Jul 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
157
2,044
0
10 Jul 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
93
1,776
0
30 May 2018
Training verified learners with learned verifiers
Krishnamurthy Dvijotham
Sven Gowal
Robert Stanforth
Relja Arandjelović
Brendan O'Donoghue
J. Uesato
Pushmeet Kohli
OOD
52
167
0
25 May 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
131
789
0
30 Apr 2018
Black-box Adversarial Attacks with Limited Queries and Information
Andrew Ilyas
Logan Engstrom
Anish Athalye
Jessy Lin
MLAU
AAML
160
1,198
0
23 Apr 2018
On the Limitation of Local Intrinsic Dimensionality for Characterizing the Subspaces of Adversarial Examples
Pei-Hsuan Lu
Pin-Yu Chen
Chia-Mu Yu
AAML
44
26
0
26 Mar 2018
Detecting Adversarial Perturbations with Saliency
Chiliang Zhang
Zhimou Yang
Zuochang Ye
AAML
31
32
0
23 Mar 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
92
930
0
09 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
187
3,180
0
01 Feb 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
105
738
0
08 Jan 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
65
1,342
0
12 Dec 2017
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
88
418
0
02 Dec 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
94
1,498
0
02 Nov 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
110
790
0
30 Oct 2017
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
124
865
0
29 Oct 2017
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models
Pin-Yu Chen
Huan Zhang
Yash Sharma
Jinfeng Yi
Cho-Jui Hsieh
AAML
75
1,875
0
14 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
269
12,029
0
19 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
889
21,815
0
22 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
118
1,854
0
20 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,720
0
19 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
174
3,865
0
10 Apr 2017
Enhancing Robustness of Machine Learning Systems via Data Transformations
A. Bhagoji
Daniel Cullina
Chawin Sitawarin
Prateek Mittal
AAML
48
231
0
09 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
69
1,260
0
04 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
175
5,968
0
04 Mar 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
90
892
0
01 Mar 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
73
712
0
21 Feb 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
59
949
0
14 Feb 2017
Understanding Neural Networks through Representation Erasure
Jiwei Li
Will Monroe
Dan Jurafsky
AAML
MILM
86
564
0
24 Dec 2016
Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics
Xin Li
Fuxin Li
GAN
AAML
110
365
0
22 Dec 2016
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
133
1,731
0
08 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
461
3,138
0
04 Nov 2016
Robustness of classifiers: from adversarial to random noise
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
65
374
0
31 Aug 2016
A Boundary Tilting Persepective on the Phenomenon of Adversarial Examples
T. Tanay
Lewis D. Griffin
AAML
65
271
0
27 Aug 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
715
36,708
0
25 Aug 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
226
8,548
0
16 Aug 2016
Early Methods for Detecting Adversarial Images
Dan Hendrycks
Kevin Gimpel
AAML
75
236
0
01 Aug 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
158
3,685
0
10 Jun 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
92
1,738
0
24 May 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
330
10,172
0
16 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
943
16,931
0
16 Feb 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
66
3,676
0
08 Feb 2016
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
80
3,955
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
123
4,886
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
64
3,072
0
14 Nov 2015
1
2
Next