Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.03367
Cited By
Using learned optimizers to make models robust to input noise
8 June 2019
Luke Metz
Niru Maheswaranathan
Jonathon Shlens
Jascha Narain Sohl-Dickstein
E. D. Cubuk
VLM
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Using learned optimizers to make models robust to input noise"
15 / 15 papers shown
Title
Enhancing object detection robustness: A synthetic and natural perturbation approach
N. Premakumara
B. Jalaeian
N. Suri
H. Samani
26
3
0
20 Apr 2023
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
39
9
0
02 Feb 2023
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
35
60
0
17 Nov 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
47
22
0
22 Sep 2022
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
38
32
0
22 Mar 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Neural Fixed-Point Acceleration for Convex Optimization
Shobha Venkataraman
Brandon Amos
38
13
0
21 Jul 2021
Learn2Hop: Learned Optimization on Rough Landscapes
Amil Merchant
Luke Metz
S. Schoenholz
E. D. Cubuk
31
16
0
20 Jul 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
52
225
0
23 Mar 2021
Training Learned Optimizers with Randomly Initialized Learned Optimizers
Luke Metz
C. Freeman
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
43
12
0
14 Jan 2021
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
33
62
0
23 Sep 2020
learn2learn: A Library for Meta-Learning Research
Sébastien M. R. Arnold
Praateek Mahajan
Debajyoti Datta
Ian Bunner
Konstantinos Saitas Zarkias
25
95
0
27 Aug 2020
Using a thousand optimization tasks to learn hyperparameter search strategies
Luke Metz
Niru Maheswaranathan
Ruoxi Sun
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
20
45
0
27 Feb 2020
When MAML Can Adapt Fast and How to Assist When It Cannot
Sébastien M. R. Arnold
Shariq Iqbal
Fei Sha
19
5
0
30 Oct 2019
PDA: Progressive Data Augmentation for General Robustness of Deep Neural Networks
Hang Yu
Aishan Liu
Xianglong Liu
Gen Li
Ping Luo
R. Cheng
Jichen Yang
Chongzhi Zhang
AAML
34
10
0
11 Sep 2019
1