ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03233
  4. Cited By
Machine Learning Prediction of Accurate Atomization Energies of Organic
  Molecules from Low-Fidelity Quantum Chemical Calculations

Machine Learning Prediction of Accurate Atomization Energies of Organic Molecules from Low-Fidelity Quantum Chemical Calculations

7 June 2019
Logan T. Ward
Ben Blaiszik
Ian Foster
R. Assary
B. Narayanan
L. Curtiss
    AI4CE
ArXivPDFHTML

Papers citing "Machine Learning Prediction of Accurate Atomization Energies of Organic Molecules from Low-Fidelity Quantum Chemical Calculations"

3 / 3 papers shown
Title
Prediction of the electron density of states for crystalline compounds
  with Atomistic Line Graph Neural Networks (ALIGNN)
Prediction of the electron density of states for crystalline compounds with Atomistic Line Graph Neural Networks (ALIGNN)
Prathik R. Kaundinya
K. Choudhary
S. Kalidindi
13
28
0
20 Jan 2022
Machine learning for electronically excited states of molecules
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
25
258
0
10 Jul 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
251
1,787
0
02 Mar 2017
1