Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02956
Cited By
Early detection of sepsis utilizing deep learning on electronic health record event sequences
7 June 2019
S. Lauritsen
M. E. Kalør
Emil Lund Kongsgaard
K. M. Lauritsen
Marianne Johansson Jørgensen
Jeppe Lange
B. Thiesson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Early detection of sepsis utilizing deep learning on electronic health record event sequences"
7 / 7 papers shown
Title
Large Language Models are Powerful Electronic Health Record Encoders
S. Hegselmann
Georg von Arnim
Tillmann Rheude
Noel Kronenberg
David Sontag
Gerhard Hindricks
Roland Eils
Benjamin Wild
LM&MA
59
1
0
24 Feb 2025
NPRL: Nightly Profile Representation Learning for Early Sepsis Onset Prediction in ICU Trauma Patients
Tucker Stewart
Katherine Stern
G. O’Keefe
Ankur Teredesai
Juhua Hu
24
0
0
25 Apr 2023
RobIn: A Robust Interpretable Deep Network for Schizophrenia Diagnosis
Daniel Organisciak
Hubert P. H. Shum
E. Nwoye
Wai Lok Woo
OOD
38
19
0
31 Mar 2022
Deep learning for temporal data representation in electronic health records: A systematic review of challenges and methodologies
F. Xie
Han Yuan
Yilin Ning
M. Ong
Mengling Feng
Wynne Hsu
B. Chakraborty
Nan Liu
32
84
0
21 Jul 2021
S-LIME: Stabilized-LIME for Model Explanation
Zhengze Zhou
Giles Hooker
Fei Wang
FAtt
35
88
0
15 Jun 2021
Explainable artificial intelligence model to predict acute critical illness from electronic health records
S. Lauritsen
Mads Kristensen
Mathias Vassard Olsen
Morten Skaarup Larsen
K. M. Lauritsen
Marianne Johansson Jørgensen
Jeppe Lange
B. Thiesson
21
298
0
03 Dec 2019
MGP-AttTCN: An Interpretable Machine Learning Model for the Prediction of Sepsis
Margherita Rosnati
Vincent Fortuin
46
34
0
27 Sep 2019
1