Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02351
Cited By
On the Convergence of SARAH and Beyond
5 June 2019
Bingcong Li
Meng Ma
G. Giannakis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Convergence of SARAH and Beyond"
7 / 7 papers shown
Title
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Daniil Medyakov
Gleb Molodtsov
S. Chezhegov
Alexey Rebrikov
Aleksandr Beznosikov
103
0
0
21 Feb 2025
Stochastic Distributed Optimization under Average Second-order Similarity: Algorithms and Analysis
Dachao Lin
Yuze Han
Haishan Ye
Zhihua Zhang
22
11
0
15 Apr 2023
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
34
0
0
19 Dec 2022
Random-reshuffled SARAH does not need a full gradient computations
Aleksandr Beznosikov
Martin Takáč
26
7
0
26 Nov 2021
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
31
125
0
25 Aug 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
299
2,890
0
15 Sep 2016
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
1