ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02330
  4. Cited By
Finding Friend and Foe in Multi-Agent Games

Finding Friend and Foe in Multi-Agent Games

5 June 2019
Jack Serrino
Max Kleiman-Weiner
David C. Parkes
J. Tenenbaum
ArXivPDFHTML

Papers citing "Finding Friend and Foe in Multi-Agent Games"

13 / 13 papers shown
Title
MultiMind: Enhancing Werewolf Agents with Multimodal Reasoning and Theory of Mind
MultiMind: Enhancing Werewolf Agents with Multimodal Reasoning and Theory of Mind
Zhenru Zhang
Nuoqian Xiao
Qi Chai
Deheng Ye
Hao Wang
LLMAG
LRM
124
0
0
25 Apr 2025
Learning to Discuss Strategically: A Case Study on One Night Ultimate Werewolf
Learning to Discuss Strategically: A Case Study on One Night Ultimate Werewolf
Xuanfa Jin
Ziyan Wang
Yali Du
Meng Fang
Haifeng Zhang
Jun Wang
OffRL
LLMAG
78
6
0
30 May 2024
Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game
Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game
Zelai Xu
Chao Yu
Fei Fang
Yu Wang
Yi Wu
LLMAG
68
84
0
29 Oct 2023
Theory of Minds: Understanding Behavior in Groups Through Inverse
  Planning
Theory of Minds: Understanding Behavior in Groups Through Inverse Planning
Michael Shum
Max Kleiman-Weiner
Michael L. Littman
J. Tenenbaum
AI4CE
27
80
0
18 Jan 2019
Deep Counterfactual Regret Minimization
Deep Counterfactual Regret Minimization
Noam Brown
Adam Lerer
Sam Gross
Tuomas Sandholm
43
213
0
01 Nov 2018
Learning to Share and Hide Intentions using Information Regularization
Learning to Share and Hide Intentions using Information Regularization
D. Strouse
Max Kleiman-Weiner
J. Tenenbaum
M. Botvinick
D. Schwab
24
60
0
06 Aug 2018
A Generalised Method for Empirical Game Theoretic Analysis
A Generalised Method for Empirical Game Theoretic Analysis
K. Tuyls
Julien Perolat
Marc Lanctot
Joel Z Leibo
T. Graepel
16
56
0
16 Mar 2018
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
Marc Lanctot
V. Zambaldi
A. Gruslys
Angeliki Lazaridou
K. Tuyls
Julien Perolat
David Silver
T. Graepel
77
628
0
02 Nov 2017
Autonomous Agents Modelling Other Agents: A Comprehensive Survey and
  Open Problems
Autonomous Agents Modelling Other Agents: A Comprehensive Survey and Open Problems
Stefano V. Albrecht
Peter Stone
82
467
0
23 Sep 2017
A multi-agent reinforcement learning model of common-pool resource
  appropriation
A multi-agent reinforcement learning model of common-pool resource appropriation
Julien Perolat
Joel Z Leibo
V. Zambaldi
Charlie Beattie
K. Tuyls
T. Graepel
37
186
0
20 Jul 2017
Maintaining cooperation in complex social dilemmas using deep
  reinforcement learning
Maintaining cooperation in complex social dilemmas using deep reinforcement learning
Adam Lerer
A. Peysakhovich
57
158
0
04 Jul 2017
Multi-agent Reinforcement Learning in Sequential Social Dilemmas
Multi-agent Reinforcement Learning in Sequential Social Dilemmas
Joel Z Leibo
V. Zambaldi
Marc Lanctot
J. Marecki
T. Graepel
37
606
0
10 Feb 2017
DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker
DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker
Matej Moravcík
Martin Schmid
Neil Burch
Viliam Lisý
Dustin Morrill
Nolan Bard
Trevor Davis
Kevin Waugh
Michael Bradley Johanson
Michael Bowling
BDL
49
904
0
06 Jan 2017
1