Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02226
Cited By
Gradient-Based Neural DAG Learning
5 June 2019
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDL
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-Based Neural DAG Learning"
27 / 27 papers shown
Title
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
93
0
0
17 Apr 2025
Characterization and Greedy Learning of Gaussian Structural Causal Models under Unknown Interventions
Juan L. Gamella
Armeen Taeb
C. Heinze-Deml
Peter Buhlmann
CML
108
8
0
13 Mar 2025
Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning
Albert Wilcox
Mohamed Ghanem
Masoud Moghani
Pierre Barroso
Benjamin Joffe
Animesh Garg
108
0
0
06 Mar 2025
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
79
0
0
28 Jan 2025
Zero-Shot Learning of Causal Models
Divyat Mahajan
Jannes Gladrow
Agrin Hilmkil
Cheng Zhang
M. Scetbon
80
1
0
08 Oct 2024
Standardizing Structural Causal Models
Weronika Ormaniec
Scott Sussex
Lars Lorch
Bernhard Schölkopf
Andreas Krause
CML
65
6
0
17 Jun 2024
Demystifying amortized causal discovery with transformers
Francesco Montagna
Max Cairney-Leeming
Dhanya Sridhar
Francesco Locatello
CML
89
1
0
27 May 2024
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth
Christian Knoll
Franz Pernkopf
Robert Peharz
CML
85
1
0
22 Feb 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
65
7
0
02 Feb 2024
Beyond Predictions in Neural ODEs: Identification and Interventions
H. Aliee
Fabian J. Theis
Niki Kilbertus
CML
73
24
0
23 Jun 2021
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
Ignavier Ng
AmirEmad Ghassami
Kun Zhang
CML
44
189
0
17 Jun 2020
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDL
CML
GNN
64
481
0
22 Apr 2019
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Diviyan Kalainathan
Olivier Goudet
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
CML
49
94
0
13 Mar 2018
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLa
CML
OffRL
59
925
0
04 Mar 2018
Theory of Deep Learning III: explaining the non-overfitting puzzle
T. Poggio
Kenji Kawaguchi
Q. Liao
Brando Miranda
Lorenzo Rosasco
Xavier Boix
Jack Hidary
H. Mhaskar
ODL
45
128
0
30 Dec 2017
Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions
Sara Magliacane
T. V. Ommen
Tom Claassen
Stephan Bongers
Philip Versteeg
Joris M. Mooij
OOD
CML
82
235
0
20 Jul 2017
Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression
Bryon Aragam
Arash A. Amini
Qing Zhou
CML
46
42
0
29 Nov 2015
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OOD
SyDa
UQCV
109
863
0
12 Feb 2015
High-dimensional learning of linear causal networks via inverse covariance estimation
Po-Ling Loh
Peter Buhlmann
CML
72
189
0
14 Nov 2013
CAM: Causal additive models, high-dimensional order search and penalized regression
Peter Buhlmann
J. Peters
J. Ernest
CML
85
323
0
06 Oct 2013
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
84
563
0
26 Sep 2013
Structural Intervention Distance (SID) for Evaluating Causal Graphs
J. Peters
Peter Buhlmann
CML
68
40
0
05 Jun 2013
ℓ
0
\ell_0
ℓ
0
-penalized maximum likelihood for sparse directed acyclic graphs
Sara van de Geer
Peter Buhlmann
CML
110
83
0
24 May 2012
Identifiability of Gaussian structural equation models with equal error variances
J. Peters
Peter Buhlmann
CML
158
336
0
11 May 2012
On the Identifiability of the Post-Nonlinear Causal Model
Kun Zhang
Aapo Hyvarinen
CML
140
558
0
09 May 2012
Bayesian network learning with cutting planes
James Cussens
45
257
0
14 Feb 2012
Causal Inference on Discrete Data using Additive Noise Models
J. Peters
Dominik Janzing
Bernhard Schölkopf
CML
69
155
0
02 Nov 2009
1