Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02120
Cited By
Adapting Neural Networks for the Estimation of Treatment Effects
5 June 2019
Claudia Shi
David M. Blei
Victor Veitch
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adapting Neural Networks for the Estimation of Treatment Effects"
23 / 73 papers shown
Title
Estimating average causal effects from patient trajectories
Dennis Frauen
Tobias Hatt
Valentyn Melnychuk
Stefan Feuerriegel
OOD
CML
19
25
0
02 Mar 2022
Partial Identification with Noisy Covariates: A Robust Optimization Approach
Wenshuo Guo
Mingzhang Yin
Yixin Wang
Michael I. Jordan
31
19
0
22 Feb 2022
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
35
69
0
21 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
28
30
0
02 Feb 2022
Multi-treatment Effect Estimation from Biomedical Data
Raquel Y. S. Aoki
Yizhou Chen
M. Ester
18
0
0
14 Dec 2021
Enhancing Counterfactual Classification via Self-Training
Ruijiang Gao
Max Biggs
Wei-Ju Sun
Ligong Han
CML
OffRL
34
6
0
08 Dec 2021
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific
Andrew Jesson
P. Manshausen
A. Douglas
D. Watson‐Parris
Y. Gal
P. Stier
AI4Cl
27
6
0
28 Oct 2021
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data
Alicia Curth
Changhee Lee
M. Schaar
CML
30
30
0
26 Oct 2021
β
β
β
-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
35
14
0
11 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
30
3
0
30 Sep 2021
Heterogeneous Treatment Effect Estimation using machine learning for Healthcare application: tutorial and benchmark
Yaobin Ling
Pulakesh Upadhyaya
Luyao Chen
Xiaoqian Jiang
Yejin Kim
CML
22
18
0
27 Sep 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
26
16
0
04 Sep 2021
Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge
Abhin Shah
Karthikeyan Shanmugam
Kartik Ahuja
CML
36
13
0
22 Jun 2021
Robust Orthogonal Machine Learning of Treatment Effects
Yiyan Huang
Cheuk Hang Leung
Qi Wu
Xing Yan
OOD
CML
16
0
0
22 Mar 2021
VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments
Lizhen Nie
Mao Ye
Qiang Liu
D. Nicolae
CML
25
68
0
14 Mar 2021
Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression
Junhyung Park
Uri Shalit
Bernhard Schölkopf
Krikamol Muandet
CML
21
31
0
16 Feb 2021
A Critical Look at the Consistency of Causal Estimation With Deep Latent Variable Models
Severi Rissanen
Pekka Marttinen
CML
25
27
0
12 Feb 2021
Estimating Average Treatment Effects via Orthogonal Regularization
Tobias Hatt
Stefan Feuerriegel
CML
164
35
0
21 Jan 2021
RealCause: Realistic Causal Inference Benchmarking
Brady Neal
Chin-Wei Huang
Sunand Raghupathi
CML
ELM
25
31
0
30 Nov 2020
GraphITE: Estimating Individual Effects of Graph-structured Treatments
Shonosuke Harada
H. Kashima
CML
27
21
0
29 Sep 2020
Estimating Individual Treatment Effects with Time-Varying Confounders
Ruoqi Liu
Changchang Yin
Ping Zhang
CML
31
27
0
27 Aug 2020
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks
Ioana Bica
James Jordon
M. Schaar
CML
30
105
0
27 Feb 2020
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
232
720
0
12 May 2016
Previous
1
2