Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.01916
Cited By
Semi-supervised semantic segmentation needs strong, varied perturbations
5 June 2019
Geoff French
S. Laine
Timo Aila
Michal Mackiewicz
G. Finlayson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Semi-supervised semantic segmentation needs strong, varied perturbations"
24 / 24 papers shown
Title
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
604
4,766
0
13 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
137
3,022
0
06 May 2019
Interpolation Consistency Training for Semi-Supervised Learning
Vikas Verma
Kenji Kawaguchi
Alex Lamb
Arno Solin
Arno Solin
Yoshua Bengio
David Lopez-Paz
101
769
0
09 Mar 2019
S4-Net: Geometry-Consistent Semi-Supervised Semantic Segmentation
Sinisa Stekovic
Friedrich Fraundorfer
Vincent Lepetit
53
4
0
27 Dec 2018
Universal Semi-Supervised Semantic Segmentation
Tarun Kalluri
G. Varma
Manmohan Chandraker
C. V. Jawahar
53
96
0
26 Nov 2018
Deep semi-supervised segmentation with weight-averaged consistency targets
C. Perone
Julien Cohen-Adad
OOD
58
72
0
12 Jul 2018
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Ben Athiwaratkun
Marc Finzi
Pavel Izmailov
A. Wilson
243
244
0
14 Jun 2018
A DIRT-T Approach to Unsupervised Domain Adaptation
Rui Shu
Hung Bui
Hirokazu Narui
Stefano Ermon
72
621
0
23 Feb 2018
Adversarial Learning for Semi-Supervised Semantic Segmentation
Wei-Chih Hung
Yi-Hsuan Tsai
Yan-Ting Liou
Yen-Yu Lin
Ming-Hsuan Yang
GAN
SSeg
104
552
0
22 Feb 2018
Smooth Neighbors on Teacher Graphs for Semi-supervised Learning
Yucen Luo
Jun Zhu
Mengxi Li
Yong Ren
Bo Zhang
57
242
0
01 Nov 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
269
9,743
0
25 Oct 2017
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
107
3,758
0
15 Aug 2017
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
143
2,732
0
13 Apr 2017
Temporal Ensembling for Semi-Supervised Learning
S. Laine
Timo Aila
UQCV
179
2,552
0
07 Oct 2016
Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning
Mehdi S. M. Sajjadi
Mehran Javanmardi
Tolga Tasdizen
BDL
77
1,112
0
14 Jun 2016
Mutual Exclusivity Loss for Semi-Supervised Deep Learning
Mehdi S. M. Sajjadi
Mehran Javanmardi
Tolga Tasdizen
SSL
35
80
0
09 Jun 2016
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
542
37,806
0
20 May 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
921
11,587
0
06 Apr 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
946
15,768
0
02 Nov 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.5K
76,917
0
18 May 2015
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
148
4,888
0
22 Dec 2014
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.3K
100,213
0
04 Sep 2014
1