ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.01916
  4. Cited By
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation needs strong, varied perturbations

5 June 2019
Geoff French
S. Laine
Timo Aila
Michal Mackiewicz
G. Finlayson
ArXivPDFHTML

Papers citing "Semi-supervised semantic segmentation needs strong, varied perturbations"

24 / 24 papers shown
Title
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
604
4,766
0
13 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
137
3,022
0
06 May 2019
Interpolation Consistency Training for Semi-Supervised Learning
Interpolation Consistency Training for Semi-Supervised Learning
Vikas Verma
Kenji Kawaguchi
Alex Lamb
Arno Solin
Arno Solin
Yoshua Bengio
David Lopez-Paz
101
769
0
09 Mar 2019
S4-Net: Geometry-Consistent Semi-Supervised Semantic Segmentation
S4-Net: Geometry-Consistent Semi-Supervised Semantic Segmentation
Sinisa Stekovic
Friedrich Fraundorfer
Vincent Lepetit
53
4
0
27 Dec 2018
Universal Semi-Supervised Semantic Segmentation
Universal Semi-Supervised Semantic Segmentation
Tarun Kalluri
G. Varma
Manmohan Chandraker
C. V. Jawahar
53
96
0
26 Nov 2018
Deep semi-supervised segmentation with weight-averaged consistency
  targets
Deep semi-supervised segmentation with weight-averaged consistency targets
C. Perone
Julien Cohen-Adad
OOD
58
72
0
12 Jul 2018
There Are Many Consistent Explanations of Unlabeled Data: Why You Should
  Average
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Ben Athiwaratkun
Marc Finzi
Pavel Izmailov
A. Wilson
243
244
0
14 Jun 2018
A DIRT-T Approach to Unsupervised Domain Adaptation
A DIRT-T Approach to Unsupervised Domain Adaptation
Rui Shu
Hung Bui
Hirokazu Narui
Stefano Ermon
72
621
0
23 Feb 2018
Adversarial Learning for Semi-Supervised Semantic Segmentation
Adversarial Learning for Semi-Supervised Semantic Segmentation
Wei-Chih Hung
Yi-Hsuan Tsai
Yan-Ting Liou
Yen-Yu Lin
Ming-Hsuan Yang
GAN
SSeg
104
552
0
22 Feb 2018
Smooth Neighbors on Teacher Graphs for Semi-supervised Learning
Smooth Neighbors on Teacher Graphs for Semi-supervised Learning
Yucen Luo
Jun Zhu
Mengxi Li
Yong Ren
Bo Zhang
57
242
0
01 Nov 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
269
9,743
0
25 Oct 2017
Improved Regularization of Convolutional Neural Networks with Cutout
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
107
3,758
0
15 Aug 2017
Virtual Adversarial Training: A Regularization Method for Supervised and
  Semi-Supervised Learning
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
143
2,732
0
13 Apr 2017
Temporal Ensembling for Semi-Supervised Learning
Temporal Ensembling for Semi-Supervised Learning
S. Laine
Timo Aila
UQCV
179
2,552
0
07 Oct 2016
Regularization With Stochastic Transformations and Perturbations for
  Deep Semi-Supervised Learning
Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning
Mehdi S. M. Sajjadi
Mehran Javanmardi
Tolga Tasdizen
BDL
77
1,112
0
14 Jun 2016
Mutual Exclusivity Loss for Semi-Supervised Deep Learning
Mutual Exclusivity Loss for Semi-Supervised Deep Learning
Mehdi S. M. Sajjadi
Mehran Javanmardi
Tolga Tasdizen
SSL
35
80
0
09 Jun 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
542
37,806
0
20 May 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
921
11,587
0
06 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
946
15,768
0
02 Nov 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.5K
76,917
0
18 May 2015
Semantic Image Segmentation with Deep Convolutional Nets and Fully
  Connected CRFs
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
148
4,888
0
22 Dec 2014
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.3K
100,213
0
04 Sep 2014
1