ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00331
  4. Cited By
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems

On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems

2 June 2019
Tianyi Lin
Chi Jin
Michael I. Jordan
ArXivPDFHTML

Papers citing "On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems"

8 / 108 papers shown
Title
GANs May Have No Nash Equilibria
GANs May Have No Nash Equilibria
Farzan Farnia
Asuman Ozdaglar
GAN
28
43
0
21 Feb 2020
Near-Optimal Algorithms for Minimax Optimization
Near-Optimal Algorithms for Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
34
251
0
05 Feb 2020
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved
  Complexities
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities
Zhongruo Wang
Krishnakumar Balasubramanian
Shiqian Ma
Meisam Razaviyayn
19
25
0
22 Jan 2020
Distributionally Robust Deep Learning using Hardness Weighted Sampling
Distributionally Robust Deep Learning using Hardness Weighted Sampling
Lucas Fidon
Michael Aertsen
Thomas Deprest
Doaa Emam
Frédéric Guffens
...
Andrew Melbourne
Sébastien Ourselin
Jan Deprest
Georg Langs
Tom Kamiel Magda Vercauteren
OOD
22
10
0
08 Jan 2020
Towards Better Understanding of Adaptive Gradient Algorithms in
  Generative Adversarial Nets
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets
Mingrui Liu
Youssef Mroueh
Jerret Ross
Wei Zhang
Xiaodong Cui
Payel Das
Tianbao Yang
ODL
38
63
0
26 Dec 2019
Adversarial Attack Generation Empowered by Min-Max Optimization
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
Yangqiu Song
AAML
25
35
0
09 Jun 2019
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and
  Applications in Machine Learning
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
15
107
0
04 Oct 2018
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave
  Saddle Point Problems without Strong Convexity
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
61
120
0
05 Feb 2018
Previous
123