Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.00117
Cited By
Model Agnostic Contrastive Explanations for Structured Data
31 May 2019
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Model Agnostic Contrastive Explanations for Structured Data"
46 / 46 papers shown
Title
Perturbation-efficient Zeroth-order Optimization for Hardware-friendly On-device Training
Qitao Tan
Sung-En Chang
Rui Xia
Huidong Ji
Chence Yang
...
Zheng Zhan
Zhou Zou
Yufei Wang
Jin Lu
Geng Yuan
41
0
0
28 Apr 2025
CELL your Model: Contrastive Explanations for Large Language Models
Ronny Luss
Erik Miehling
Amit Dhurandhar
47
0
0
17 Jun 2024
Comparison of decision trees with Local Interpretable Model-Agnostic Explanations (LIME) technique and multi-linear regression for explaining support vector regression model in terms of root mean square error (RMSE) values
Amit Thombre
FAtt
15
1
0
10 Apr 2024
Fully Zeroth-Order Bilevel Programming via Gaussian Smoothing
Alireza Aghasi
Saeed Ghadimi
41
2
0
29 Mar 2024
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark
Yihua Zhang
Pingzhi Li
Junyuan Hong
Jiaxiang Li
Yimeng Zhang
...
Wotao Yin
Mingyi Hong
Zhangyang Wang
Sijia Liu
Tianlong Chen
35
45
0
18 Feb 2024
Trust Regions for Explanations via Black-Box Probabilistic Certification
Amit Dhurandhar
Swagatam Haldar
Dennis L. Wei
Karthikeyan N. Ramamurthy
FAtt
40
2
0
17 Feb 2024
Rendering Wireless Environments Useful for Gradient Estimators: A Zero-Order Stochastic Federated Learning Method
Elissa Mhanna
Mohamad Assaad
55
1
0
30 Jan 2024
Navigating the Structured What-If Spaces: Counterfactual Generation via Structured Diffusion
Nishtha Madaan
Srikanta J. Bedathur
DiffM
38
0
0
21 Dec 2023
Explainable History Distillation by Marked Temporal Point Process
Sishun Liu
Ke Deng
Yan Wang
Xiuzhen Zhang
35
0
0
13 Nov 2023
DeepZero: Scaling up Zeroth-Order Optimization for Deep Model Training
Aochuan Chen
Yimeng Zhang
Jinghan Jia
James Diffenderfer
Jiancheng Liu
Konstantinos Parasyris
Yihua Zhang
Zheng-Wei Zhang
B. Kailkhura
Sijia Liu
37
43
0
03 Oct 2023
CLIMAX: An exploration of Classifier-Based Contrastive Explanations
Praharsh Nanavati
Ranjitha Prasad
42
0
0
02 Jul 2023
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Tri Dung Duong
Qian Li
Guandong Xu
OOD
40
7
0
26 Mar 2023
Data-centric Artificial Intelligence: A Survey
Daochen Zha
Zaid Pervaiz Bhat
Kwei-Herng Lai
Fan Yang
Zhimeng Jiang
Shaochen Zhong
Xia Hu
27
193
0
17 Mar 2023
Function Composition in Trustworthy Machine Learning: Implementation Choices, Insights, and Questions
Manish Nagireddy
Moninder Singh
Samuel C. Hoffman
Evaline Ju
Karthikeyan N. Ramamurthy
Kush R. Varshney
32
1
0
17 Feb 2023
Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal
M. Hashemi
Ali Darejeh
Francisco Cruz
44
3
0
07 Feb 2023
Sanity checks and improvements for patch visualisation in prototype-based image classification
Romain Xu-Darme
Georges Quénot
Zakaria Chihani
M. Rousset
12
3
0
20 Jan 2023
CEnt: An Entropy-based Model-agnostic Explainability Framework to Contrast Classifiers' Decisions
Julia El Zini
Mohamad Mansour
M. Awad
33
1
0
19 Jan 2023
A survey and taxonomy of loss functions in machine learning
Lorenzo Ciampiconi
A. Elwood
Marco Leonardi
A. Mohamed
A. Rozza
MU
FaML
11
27
0
13 Jan 2023
An Empirical Evaluation of Zeroth-Order Optimization Methods on AI-driven Molecule Optimization
Elvin Lo
Pin-Yu Chen
42
0
0
27 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
40
54
0
16 Oct 2022
MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation
Wenzhuo Yang
Jia Li
Caiming Xiong
Guosheng Lin
CML
35
13
0
31 May 2022
Features of Explainability: How users understand counterfactual and causal explanations for categorical and continuous features in XAI
Greta Warren
Mark T. Keane
R. Byrne
CML
27
22
0
21 Apr 2022
Locally Invariant Explanations: Towards Stable and Unidirectional Explanations through Local Invariant Learning
Amit Dhurandhar
Karthikeyan N. Ramamurthy
Kartik Ahuja
Vijay Arya
FAtt
30
4
0
28 Jan 2022
Post-discovery Analysis of Anomalous Subsets
I. Mulang'
William Ogallo
G. Tadesse
Aisha Walcott-Bryant
29
1
0
23 Nov 2021
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
19
10
0
30 Oct 2021
Let the CAT out of the bag: Contrastive Attributed explanations for Text
Saneem A. Chemmengath
A. Azad
Ronny Luss
Amit Dhurandhar
FAtt
34
10
0
16 Sep 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
37
65
0
23 Jun 2021
Amortized Generation of Sequential Algorithmic Recourses for Black-box Models
Sahil Verma
Keegan E. Hines
John P. Dickerson
22
23
0
07 Jun 2021
Causality-based Counterfactual Explanation for Classification Models
Tri Dung Duong
Qian Li
Guandong Xu
CML
11
1
0
03 May 2021
NICE: An Algorithm for Nearest Instance Counterfactual Explanations
Dieter Brughmans
Pieter Leyman
David Martens
35
63
0
15 Apr 2021
Contrastive Explanations for Explaining Model Adaptations
André Artelt
Fabian Hinder
Valerie Vaquet
Robert Feldhans
Barbara Hammer
54
4
0
06 Apr 2021
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
25
108
0
26 Feb 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
27
146
0
26 Feb 2021
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
26
97
0
30 Nov 2020
Contrastive Graph Neural Network Explanation
Lukas Faber
A. K. Moghaddam
Roger Wattenhofer
31
36
0
26 Oct 2020
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
164
0
20 Oct 2020
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
14
172
0
08 Oct 2020
Efficient computation of contrastive explanations
André Artelt
Barbara Hammer
11
9
0
06 Oct 2020
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
27
19
0
26 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
26
224
0
11 Jun 2020
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
24
252
0
23 Apr 2020
Explaining Groups of Points in Low-Dimensional Representations
Gregory Plumb
Jonathan Terhorst
S. Sankararaman
Ameet Talwalkar
10
30
0
03 Mar 2020
Learning Global Transparent Models Consistent with Local Contrastive Explanations
Tejaswini Pedapati
Avinash Balakrishnan
Karthikeyan Shanmugam
Amit Dhurandhar
FAtt
22
0
0
19 Feb 2020
An explanation method for Siamese neural networks
Lev V. Utkin
M. Kovalev
E. Kasimov
27
14
0
18 Nov 2019
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
29
380
0
03 Jul 2019
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1