ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00117
  4. Cited By
Model Agnostic Contrastive Explanations for Structured Data

Model Agnostic Contrastive Explanations for Structured Data

31 May 2019
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
    FAtt
ArXivPDFHTML

Papers citing "Model Agnostic Contrastive Explanations for Structured Data"

46 / 46 papers shown
Title
Perturbation-efficient Zeroth-order Optimization for Hardware-friendly On-device Training
Perturbation-efficient Zeroth-order Optimization for Hardware-friendly On-device Training
Qitao Tan
Sung-En Chang
Rui Xia
Huidong Ji
Chence Yang
...
Zheng Zhan
Zhou Zou
Yufei Wang
Jin Lu
Geng Yuan
41
0
0
28 Apr 2025
CELL your Model: Contrastive Explanations for Large Language Models
CELL your Model: Contrastive Explanations for Large Language Models
Ronny Luss
Erik Miehling
Amit Dhurandhar
47
0
0
17 Jun 2024
Comparison of decision trees with Local Interpretable Model-Agnostic
  Explanations (LIME) technique and multi-linear regression for explaining
  support vector regression model in terms of root mean square error (RMSE)
  values
Comparison of decision trees with Local Interpretable Model-Agnostic Explanations (LIME) technique and multi-linear regression for explaining support vector regression model in terms of root mean square error (RMSE) values
Amit Thombre
FAtt
15
1
0
10 Apr 2024
Fully Zeroth-Order Bilevel Programming via Gaussian Smoothing
Fully Zeroth-Order Bilevel Programming via Gaussian Smoothing
Alireza Aghasi
Saeed Ghadimi
41
2
0
29 Mar 2024
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM
  Fine-Tuning: A Benchmark
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark
Yihua Zhang
Pingzhi Li
Junyuan Hong
Jiaxiang Li
Yimeng Zhang
...
Wotao Yin
Mingyi Hong
Zhangyang Wang
Sijia Liu
Tianlong Chen
35
45
0
18 Feb 2024
Trust Regions for Explanations via Black-Box Probabilistic Certification
Trust Regions for Explanations via Black-Box Probabilistic Certification
Amit Dhurandhar
Swagatam Haldar
Dennis L. Wei
Karthikeyan N. Ramamurthy
FAtt
40
2
0
17 Feb 2024
Rendering Wireless Environments Useful for Gradient Estimators: A Zero-Order Stochastic Federated Learning Method
Rendering Wireless Environments Useful for Gradient Estimators: A Zero-Order Stochastic Federated Learning Method
Elissa Mhanna
Mohamad Assaad
55
1
0
30 Jan 2024
Navigating the Structured What-If Spaces: Counterfactual Generation via
  Structured Diffusion
Navigating the Structured What-If Spaces: Counterfactual Generation via Structured Diffusion
Nishtha Madaan
Srikanta J. Bedathur
DiffM
38
0
0
21 Dec 2023
Explainable History Distillation by Marked Temporal Point Process
Explainable History Distillation by Marked Temporal Point Process
Sishun Liu
Ke Deng
Yan Wang
Xiuzhen Zhang
35
0
0
13 Nov 2023
DeepZero: Scaling up Zeroth-Order Optimization for Deep Model Training
DeepZero: Scaling up Zeroth-Order Optimization for Deep Model Training
Aochuan Chen
Yimeng Zhang
Jinghan Jia
James Diffenderfer
Jiancheng Liu
Konstantinos Parasyris
Yihua Zhang
Zheng-Wei Zhang
B. Kailkhura
Sijia Liu
37
43
0
03 Oct 2023
CLIMAX: An exploration of Classifier-Based Contrastive Explanations
CLIMAX: An exploration of Classifier-Based Contrastive Explanations
Praharsh Nanavati
Ranjitha Prasad
42
0
0
02 Jul 2023
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for
  Tabular Data using Normalizing Flows
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Tri Dung Duong
Qian Li
Guandong Xu
OOD
40
7
0
26 Mar 2023
Data-centric Artificial Intelligence: A Survey
Data-centric Artificial Intelligence: A Survey
Daochen Zha
Zaid Pervaiz Bhat
Kwei-Herng Lai
Fan Yang
Zhimeng Jiang
Shaochen Zhong
Xia Hu
27
193
0
17 Mar 2023
Function Composition in Trustworthy Machine Learning: Implementation
  Choices, Insights, and Questions
Function Composition in Trustworthy Machine Learning: Implementation Choices, Insights, and Questions
Manish Nagireddy
Moninder Singh
Samuel C. Hoffman
Evaline Ju
Karthikeyan N. Ramamurthy
Kush R. Varshney
32
1
0
17 Feb 2023
Understanding User Preferences in Explainable Artificial Intelligence: A
  Survey and a Mapping Function Proposal
Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal
M. Hashemi
Ali Darejeh
Francisco Cruz
44
3
0
07 Feb 2023
Sanity checks and improvements for patch visualisation in
  prototype-based image classification
Sanity checks and improvements for patch visualisation in prototype-based image classification
Romain Xu-Darme
Georges Quénot
Zakaria Chihani
M. Rousset
12
3
0
20 Jan 2023
CEnt: An Entropy-based Model-agnostic Explainability Framework to
  Contrast Classifiers' Decisions
CEnt: An Entropy-based Model-agnostic Explainability Framework to Contrast Classifiers' Decisions
Julia El Zini
Mohamad Mansour
M. Awad
33
1
0
19 Jan 2023
A survey and taxonomy of loss functions in machine learning
A survey and taxonomy of loss functions in machine learning
Lorenzo Ciampiconi
A. Elwood
Marco Leonardi
A. Mohamed
A. Rozza
MU
FaML
11
27
0
13 Jan 2023
An Empirical Evaluation of Zeroth-Order Optimization Methods on
  AI-driven Molecule Optimization
An Empirical Evaluation of Zeroth-Order Optimization Methods on AI-driven Molecule Optimization
Elvin Lo
Pin-Yu Chen
42
0
0
27 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
40
54
0
16 Oct 2022
MACE: An Efficient Model-Agnostic Framework for Counterfactual
  Explanation
MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation
Wenzhuo Yang
Jia Li
Caiming Xiong
Guosheng Lin
CML
35
13
0
31 May 2022
Features of Explainability: How users understand counterfactual and
  causal explanations for categorical and continuous features in XAI
Features of Explainability: How users understand counterfactual and causal explanations for categorical and continuous features in XAI
Greta Warren
Mark T. Keane
R. Byrne
CML
27
22
0
21 Apr 2022
Locally Invariant Explanations: Towards Stable and Unidirectional
  Explanations through Local Invariant Learning
Locally Invariant Explanations: Towards Stable and Unidirectional Explanations through Local Invariant Learning
Amit Dhurandhar
Karthikeyan N. Ramamurthy
Kartik Ahuja
Vijay Arya
FAtt
30
4
0
28 Jan 2022
Post-discovery Analysis of Anomalous Subsets
Post-discovery Analysis of Anomalous Subsets
I. Mulang'
William Ogallo
G. Tadesse
Aisha Walcott-Bryant
29
1
0
23 Nov 2021
On Quantitative Evaluations of Counterfactuals
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
19
10
0
30 Oct 2021
Let the CAT out of the bag: Contrastive Attributed explanations for Text
Let the CAT out of the bag: Contrastive Attributed explanations for Text
Saneem A. Chemmengath
A. Azad
Ronny Luss
Amit Dhurandhar
FAtt
34
10
0
16 Sep 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine
  Learning
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
37
65
0
23 Jun 2021
Amortized Generation of Sequential Algorithmic Recourses for Black-box
  Models
Amortized Generation of Sequential Algorithmic Recourses for Black-box Models
Sahil Verma
Keegan E. Hines
John P. Dickerson
22
23
0
07 Jun 2021
Causality-based Counterfactual Explanation for Classification Models
Causality-based Counterfactual Explanation for Classification Models
Tri Dung Duong
Qian Li
Guandong Xu
CML
11
1
0
03 May 2021
NICE: An Algorithm for Nearest Instance Counterfactual Explanations
NICE: An Algorithm for Nearest Instance Counterfactual Explanations
Dieter Brughmans
Pieter Leyman
David Martens
35
63
0
15 Apr 2021
Contrastive Explanations for Explaining Model Adaptations
Contrastive Explanations for Explaining Model Adaptations
André Artelt
Fabian Hinder
Valerie Vaquet
Robert Feldhans
Barbara Hammer
54
4
0
06 Apr 2021
Towards Robust and Reliable Algorithmic Recourse
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
25
108
0
26 Feb 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to
  Rectify in the Evaluation of Counterfactual XAI Techniques
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
27
146
0
26 Feb 2021
Why model why? Assessing the strengths and limitations of LIME
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
26
97
0
30 Nov 2020
Contrastive Graph Neural Network Explanation
Contrastive Graph Neural Network Explanation
Lukas Faber
A. K. Moghaddam
Roger Wattenhofer
31
36
0
26 Oct 2020
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
164
0
20 Oct 2020
A survey of algorithmic recourse: definitions, formulations, solutions,
  and prospects
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
14
172
0
08 Oct 2020
Efficient computation of contrastive explanations
Efficient computation of contrastive explanations
André Artelt
Barbara Hammer
11
9
0
06 Oct 2020
Counterfactual explanation of machine learning survival models
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
27
19
0
26 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine
  Learning
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
26
224
0
11 Jun 2020
Multi-Objective Counterfactual Explanations
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
24
252
0
23 Apr 2020
Explaining Groups of Points in Low-Dimensional Representations
Explaining Groups of Points in Low-Dimensional Representations
Gregory Plumb
Jonathan Terhorst
S. Sankararaman
Ameet Talwalkar
10
30
0
03 Mar 2020
Learning Global Transparent Models Consistent with Local Contrastive
  Explanations
Learning Global Transparent Models Consistent with Local Contrastive Explanations
Tejaswini Pedapati
Avinash Balakrishnan
Karthikeyan Shanmugam
Amit Dhurandhar
FAtt
22
0
0
19 Feb 2020
An explanation method for Siamese neural networks
An explanation method for Siamese neural networks
Lev V. Utkin
M. Kovalev
E. Kasimov
27
14
0
18 Nov 2019
Interpretable Counterfactual Explanations Guided by Prototypes
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
29
380
0
03 Jul 2019
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1