Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13229
Cited By
Private Hypothesis Selection
30 May 2019
Mark Bun
Gautam Kamath
Thomas Steinke
Zhiwei Steven Wu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Private Hypothesis Selection"
24 / 24 papers shown
Title
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
46
0
0
03 Feb 2025
Sample-Optimal Locally Private Hypothesis Selection and the Provable Benefits of Interactivity
A. F. Pour
Hassan Ashtiani
S. Asoodeh
43
0
0
09 Dec 2023
Instance-Specific Asymmetric Sensitivity in Differential Privacy
David Durfee
32
1
0
02 Nov 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
42
11
0
11 Aug 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
40
23
0
07 Mar 2023
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
18
50
0
09 Dec 2022
Answering Private Linear Queries Adaptively using the Common Mechanism
Yingtai Xiao
Guanhong Wang
Danfeng Zhang
Daniel Kifer
65
7
0
30 Nov 2022
On the Statistical Complexity of Estimation and Testing under Privacy Constraints
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
27
7
0
05 Oct 2022
Private Estimation with Public Data
Alex Bie
Gautam Kamath
Vikrant Singhal
36
28
0
16 Aug 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
42
26
0
17 May 2022
Private High-Dimensional Hypothesis Testing
Shyam Narayanan
FedML
40
11
0
03 Mar 2022
Differentially-Private Clustering of Easy Instances
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
Eliad Tsfadia
12
22
0
29 Dec 2021
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
35
46
0
07 Dec 2021
Lower Bounds on the Total Variation Distance Between Mixtures of Two Gaussians
Sami Davies
A. Mazumdar
S. Pal
Cyrus Rashtchian
50
11
0
02 Sep 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
28
48
0
24 Jun 2021
On Avoiding the Union Bound When Answering Multiple Differentially Private Queries
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
FedML
28
10
0
16 Dec 2020
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
40
41
0
19 Oct 2020
Learning discrete distributions: user vs item-level privacy
Yuhan Liu
A. Suresh
Felix X. Yu
Sanjiv Kumar
Michael Riley
FedML
25
52
0
27 Jul 2020
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
Yihe Dong
Gautam Kamath
Jonathan R. Ullman
39
115
0
11 Jun 2020
Near Instance-Optimality in Differential Privacy
Hilal Asi
John C. Duchi
26
38
0
16 May 2020
A Primer on Private Statistics
Gautam Kamath
Jonathan R. Ullman
38
48
0
30 Apr 2020
Differentially Private Assouad, Fano, and Le Cam
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
FedML
23
57
0
14 Apr 2020
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
150
420
0
29 Nov 2018
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
72
148
0
01 May 2018
1