ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13021
  4. Cited By
Robustness to Adversarial Perturbations in Learning from Incomplete Data

Robustness to Adversarial Perturbations in Learning from Incomplete Data

24 May 2019
Amir Najafi
S. Maeda
Masanori Koyama
Takeru Miyato
    OOD
ArXivPDFHTML

Papers citing "Robustness to Adversarial Perturbations in Learning from Incomplete Data"

31 / 81 papers shown
Title
Understanding Catastrophic Overfitting in Single-step Adversarial
  Training
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
16
108
0
05 Oct 2020
Do Wider Neural Networks Really Help Adversarial Robustness?
Do Wider Neural Networks Really Help Adversarial Robustness?
Boxi Wu
Jinghui Chen
Deng Cai
Xiaofei He
Quanquan Gu
AAML
14
95
0
03 Oct 2020
Label Smoothing and Adversarial Robustness
Label Smoothing and Adversarial Robustness
Chaohao Fu
Hongbin Chen
Na Ruan
Weijia Jia
AAML
16
12
0
17 Sep 2020
Finite-Sample Guarantees for Wasserstein Distributionally Robust
  Optimization: Breaking the Curse of Dimensionality
Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality
Rui Gao
29
88
0
09 Sep 2020
On the Generalization Properties of Adversarial Training
On the Generalization Properties of Adversarial Training
Yue Xing
Qifan Song
Guang Cheng
AAML
25
32
0
15 Aug 2020
Measuring Robustness to Natural Distribution Shifts in Image
  Classification
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
39
536
0
01 Jul 2020
ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining
ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining
Jiefeng Chen
Yixuan Li
Xi Wu
Yingyu Liang
S. Jha
OODD
24
135
0
26 Jun 2020
Statistical and Algorithmic Insights for Semi-supervised Learning with
  Self-training
Statistical and Algorithmic Insights for Semi-supervised Learning with Self-training
Samet Oymak
Talha Cihad Gulcu
24
19
0
19 Jun 2020
Improving Adversarial Robustness via Unlabeled Out-of-Domain Data
Improving Adversarial Robustness via Unlabeled Out-of-Domain Data
Zhun Deng
Linjun Zhang
Amirata Ghorbani
James Zou
26
32
0
15 Jun 2020
Targeted Adversarial Perturbations for Monocular Depth Prediction
Targeted Adversarial Perturbations for Monocular Depth Prediction
A. Wong
Safa Cicek
Stefano Soatto
AAML
MDE
16
43
0
12 Jun 2020
Trade-offs between membership privacy & adversarially robust learning
Trade-offs between membership privacy & adversarially robust learning
Jamie Hayes
SILM
27
3
0
08 Jun 2020
Unique properties of adversarially trained linear classifiers on
  Gaussian data
Unique properties of adversarially trained linear classifiers on Gaussian data
Jamie Hayes
AAML
52
0
0
06 Jun 2020
Domain Knowledge Alleviates Adversarial Attacks in Multi-Label
  Classifiers
Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Classifiers
S. Melacci
Gabriele Ciravegna
Angelo Sotgiu
Ambra Demontis
Battista Biggio
Marco Gori
Fabio Roli
9
14
0
06 Jun 2020
Adversarial Weight Perturbation Helps Robust Generalization
Adversarial Weight Perturbation Helps Robust Generalization
Dongxian Wu
Shutao Xia
Yisen Wang
OOD
AAML
22
17
0
13 Apr 2020
Adversarial Robustness on In- and Out-Distribution Improves
  Explainability
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
75
99
0
20 Mar 2020
Understanding Self-Training for Gradual Domain Adaptation
Understanding Self-Training for Gradual Domain Adaptation
Ananya Kumar
Tengyu Ma
Percy Liang
CLL
TTA
28
228
0
26 Feb 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
33
397
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help,
  Double Descend, or Hurt Generalization
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
37
69
0
25 Feb 2020
Understanding and Mitigating the Tradeoff Between Robustness and
  Accuracy
Understanding and Mitigating the Tradeoff Between Robustness and Accuracy
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
AAML
51
223
0
25 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust
  and Standard Models
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
38
64
0
11 Feb 2020
Incorporating Unlabeled Data into Distributionally Robust Learning
Incorporating Unlabeled Data into Distributionally Robust Learning
Charlie Frogner
Sebastian Claici
Edward Chien
Justin Solomon
OOD
19
26
0
16 Dec 2019
Adversarial Examples Improve Image Recognition
Adversarial Examples Improve Image Recognition
Cihang Xie
Mingxing Tan
Boqing Gong
Jiang Wang
Alan Yuille
Quoc V. Le
AAML
42
564
0
21 Nov 2019
Where is the Bottleneck of Adversarial Learning with Unlabeled Data?
Where is the Bottleneck of Adversarial Learning with Unlabeled Data?
Jingfeng Zhang
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
30
6
0
20 Nov 2019
Self-training with Noisy Student improves ImageNet classification
Self-training with Noisy Student improves ImageNet classification
Qizhe Xie
Minh-Thang Luong
Eduard H. Hovy
Quoc V. Le
NoLa
88
2,364
0
11 Nov 2019
Adversarial Training Can Hurt Generalization
Adversarial Training Can Hurt Generalization
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
13
240
0
14 Jun 2019
Adversarially Robust Generalization Just Requires More Unlabeled Data
Adversarially Robust Generalization Just Requires More Unlabeled Data
Runtian Zhai
Tianle Cai
Di He
Chen Dan
Kun He
J. Hopcroft
Liwei Wang
9
154
0
03 Jun 2019
Unlabeled Data Improves Adversarial Robustness
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
45
743
0
31 May 2019
Are Labels Required for Improving Adversarial Robustness?
Are Labels Required for Improving Adversarial Robustness?
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
11
331
0
31 May 2019
Unsupervised Data Augmentation for Consistency Training
Unsupervised Data Augmentation for Consistency Training
Qizhe Xie
Zihang Dai
Eduard H. Hovy
Minh-Thang Luong
Quoc V. Le
61
2,290
0
29 Apr 2019
Improved Generalization Bounds for Adversarially Robust Learning
Improved Generalization Bounds for Adversarially Robust Learning
Idan Attias
A. Kontorovich
Yishay Mansour
27
17
0
04 Oct 2018
On the Convergence of the EM Algorithm: A Data-Adaptive Analysis
On the Convergence of the EM Algorithm: A Data-Adaptive Analysis
Chong Wu
Can Yang
Hongyu Zhao
Ji Zhu
38
19
0
02 Nov 2016
Previous
12