ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13002
  4. Cited By
Temporal Parallelization of Bayesian Smoothers

Temporal Parallelization of Bayesian Smoothers

30 May 2019
Simo Särkkä
Á. F. García-Fernández
ArXivPDFHTML

Papers citing "Temporal Parallelization of Bayesian Smoothers"

11 / 11 papers shown
Title
Computation-Aware Kalman Filtering and Smoothing
Computation-Aware Kalman Filtering and Smoothing
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
86
3
0
13 Mar 2025
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
78
1
0
20 Feb 2025
Towards Scalable and Stable Parallelization of Nonlinear RNNs
Towards Scalable and Stable Parallelization of Nonlinear RNNs
Xavier Gonzalez
Andrew Warrington
Jimmy T.H. Smith
Scott W. Linderman
85
8
0
17 Jan 2025
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
Byoungwoo Park
Hyungi Lee
Juho Lee
AI4TS
41
0
0
08 Oct 2024
Numerically Robust Fixed-Point Smoothing Without State Augmentation
Numerically Robust Fixed-Point Smoothing Without State Augmentation
Nicholas Krämer
31
2
0
30 Sep 2024
SynJax: Structured Probability Distributions for JAX
SynJax: Structured Probability Distributions for JAX
Miloš Stanojević
Laurent Sartran
SyDa
13
4
0
07 Aug 2023
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
Adrien Corenflos
Simo Särkkä
13
0
0
01 Mar 2023
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
19
7
0
04 Feb 2022
Reactive Message Passing for Scalable Bayesian Inference
Reactive Message Passing for Scalable Bayesian Inference
Dmitry V. Bagaev
Bert De Vries
25
18
0
25 Dec 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
11
31
0
02 Nov 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable
  Gaussian Processes
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard E. Turner
21
8
0
18 Jun 2021
1