Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.12648
Cited By
Convergence of Distributed Stochastic Variance Reduced Methods without Sampling Extra Data
29 May 2019
Shicong Cen
Huishuai Zhang
Yuejie Chi
Wei-neng Chen
Tie-Yan Liu
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence of Distributed Stochastic Variance Reduced Methods without Sampling Extra Data"
28 / 28 papers shown
Title
SpiderBoost and Momentum: Faster Stochastic Variance Reduction Algorithms
Zhe Wang
Kaiyi Ji
Yi Zhou
Yingbin Liang
Vahid Tarokh
ODL
72
82
0
25 Oct 2018
The Convergence of Sparsified Gradient Methods
Dan Alistarh
Torsten Hoefler
M. Johansson
Sarit Khirirat
Nikola Konstantinov
Cédric Renggli
151
492
0
27 Sep 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
85
577
0
04 Jul 2018
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
58
75
0
28 Jun 2018
Dissipativity Theory for Accelerating Stochastic Variance Reduction: A Unified Analysis of SVRG and Katyusha Using Semidefinite Programs
Bin Hu
S. Wright
Laurent Lessard
41
20
0
10 Jun 2018
D
2
^2
2
: Decentralized Training over Decentralized Data
Hanlin Tang
Xiangru Lian
Ming Yan
Ce Zhang
Ji Liu
31
350
0
19 Mar 2018
Proximal SCOPE for Distributed Sparse Learning: Better Data Partition Implies Faster Convergence Rate
Shen-Yi Zhao
Gong-Duo Zhang
Ming-Wei Li
Wu-Jun Li
26
8
0
15 Mar 2018
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
87
1,041
0
13 Feb 2018
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
122
1,407
0
05 Dec 2017
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
74
525
0
26 Oct 2017
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
65
129
0
11 Sep 2017
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
48
1,226
0
25 May 2017
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
137
987
0
22 May 2017
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
157
603
0
01 Mar 2017
Memory and Communication Efficient Distributed Stochastic Optimization with Minibatch-Prox
Jialei Wang
Weiran Wang
Nathan Srebro
82
54
0
21 Feb 2017
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith
Simone Forte
Chenxin Ma
Martin Takáč
Michael I. Jordan
Martin Jaggi
66
273
0
07 Nov 2016
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
53
151
0
24 Aug 2016
The Landscape of Empirical Risk for Non-convex Losses
Song Mei
Yu Bai
Andrea Montanari
94
312
0
22 Jul 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
96
580
0
18 Mar 2016
SCOPE: Scalable Composite Optimization for Learning on Spark
Shen-Yi Zhao
Ru Xiang
Yinghuan Shi
Peng Gao
Wu-Jun Li
74
16
0
30 Jan 2016
Efficient Distributed SGD with Variance Reduction
Soham De
Tom Goldstein
49
39
0
09 Dec 2015
Federated Optimization:Distributed Optimization Beyond the Datacenter
Jakub Konecný
H. B. McMahan
Daniel Ramage
FedML
113
735
0
11 Nov 2015
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
131
1,823
0
01 Jul 2014
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
150
738
0
19 Mar 2014
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
86
556
0
30 Dec 2013
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
302
1,246
0
10 Sep 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
163
1,032
0
10 Sep 2012
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
177
2,273
0
28 Jun 2011
1