Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.12374
Cited By
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
29 May 2019
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDa
CML
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series"
23 / 173 papers shown
Title
Neural Ordinary Differential Equations for Intervention Modeling
Daehoon Gwak
Gyuhyeon Sim
Michael Poli
Stefano Massaroli
Jaegul Choo
Edward Choi
37
19
0
16 Oct 2020
Vid-ODE: Continuous-Time Video Generation with Neural Ordinary Differential Equation
Sunghyun Park
Kangyeol Kim
Junsoo Lee
Jaegul Choo
Joonseok Lee
Sookyung Kim
Edward Choi
21
54
0
16 Oct 2020
A Transformer-based Framework for Multivariate Time Series Representation Learning
George Zerveas
Srideepika Jayaraman
Dhaval Patel
A. Bhamidipaty
Carsten Eickhoff
AI4TS
21
889
0
06 Oct 2020
Cubic Spline Smoothing Compensation for Irregularly Sampled Sequences
Jing Shi
Jing Bi
Yingru Liu
Chenliang Xu
6
0
0
03 Oct 2020
Predicting Parkinson's Disease with Multimodal Irregularly Collected Longitudinal Smartphone Data
Weijian Li
Wei-wei Zhu
E. R. Dorsey
Jiebo Luo
6
7
0
25 Sep 2020
Adversarial Examples in Deep Learning for Multivariate Time Series Regression
Gautam Raj Mode
K. A. Hoque
AAML
AI4TS
23
57
0
24 Sep 2020
Neural Rough Differential Equations for Long Time Series
James Morrill
C. Salvi
Patrick Kidger
James Foster
Terry Lyons
AI4TS
31
124
0
17 Sep 2020
Manifold-adaptive dimension estimation revisited
Zsigmond Benkő
Marcell Stippinger
Roberta Rehus
A. Bencze
D. Fabó
B. Hajnal
Loránd Eröss
A. Telcs
Zoltán Somogyvári
12
10
0
07 Aug 2020
Temporal Pointwise Convolutional Networks for Length of Stay Prediction in the Intensive Care Unit
Emma Rocheteau
Pietro Lió
Stephanie L. Hyland
OOD
16
56
0
18 Jul 2020
Learning Differential Equations that are Easy to Solve
Jacob Kelly
J. Bettencourt
Matthew J. Johnson
David Duvenaud
30
111
0
09 Jul 2020
Model-based Reinforcement Learning for Semi-Markov Decision Processes with Neural ODEs
Jianzhun Du
Joseph D. Futoma
Finale Doshi-Velez
27
49
0
29 Jun 2020
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
30
107
0
22 Jun 2020
Understanding Recurrent Neural Networks Using Nonequilibrium Response Theory
S. H. Lim
24
16
0
19 Jun 2020
Learning Continuous-Time Dynamics by Stochastic Differential Networks
Yingru Liu
Yucheng Xing
Xuewen Yang
Xin Wang
Jing Shi
Di Jin
Zhaoyue Chen
BDL
21
6
0
11 Jun 2020
Neural Jump Ordinary Differential Equations: Consistent Continuous-Time Prediction and Filtering
Calypso Herrera
Florian Krach
Josef Teichmann
BDL
AI4TS
15
30
0
08 Jun 2020
Learning Long-Term Dependencies in Irregularly-Sampled Time Series
Mathias Lechner
Ramin Hasani
AI4TS
22
127
0
08 Jun 2020
Tensorized Transformer for Dynamical Systems Modeling
Anna Shalova
Ivan Oseledets
AI4CE
19
8
0
05 Jun 2020
Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?
Jeremy Georges-Filteau
Elisa Cirillo
SyDa
AI4CE
36
17
0
27 May 2020
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
25
449
0
18 May 2020
Local Lipschitz Bounds of Deep Neural Networks
Calypso Herrera
Florian Krach
Josef Teichmann
14
3
0
27 Apr 2020
Stochastic Latent Residual Video Prediction
Jean-Yves Franceschi
E. Delasalles
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
VGen
26
159
0
21 Feb 2020
Latent ODEs for Irregularly-Sampled Time Series
Yulia Rubanova
Ricky T. Q. Chen
David Duvenaud
BDL
AI4TS
31
251
0
08 Jul 2019
Recurrent Neural Networks for Multivariate Time Series with Missing Values
Zhengping Che
S. Purushotham
Kyunghyun Cho
David Sontag
Yan Liu
AI4TS
219
1,897
0
06 Jun 2016
Previous
1
2
3
4