Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.12202
Cited By
Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness
29 May 2019
Saeed Mahloujifar
Xiao Zhang
Mohammad Mahmoody
David Evans
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness"
28 / 28 papers shown
Title
Lower Bounds on Adversarial Robustness from Optimal Transport
A. Bhagoji
Daniel Cullina
Prateek Mittal
OOD
OT
AAML
58
93
0
26 Sep 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
67
347
0
14 Jun 2019
Adversarial Training Can Hurt Generalization
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
82
242
0
14 Jun 2019
VC Classes are Adversarially Robustly Learnable, but Only Improperly
Omar Montasser
Steve Hanneke
Nathan Srebro
29
139
0
12 Feb 2019
Understanding the (un)interpretability of natural image distributions using generative models
Ryen Krusinga
Sohil Shah
Matthias Zwicker
Tom Goldstein
David Jacobs
DiffM
FAtt
GAN
59
11
0
06 Jan 2019
On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models
Sven Gowal
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
Chongli Qin
J. Uesato
Relja Arandjelović
Timothy A. Mann
Pushmeet Kohli
AAML
79
556
0
30 Oct 2018
Adversarial Risk and Robustness: General Definitions and Implications for the Uniform Distribution
Dimitrios I. Diochnos
Saeed Mahloujifar
Mohammad Mahmoody
AAML
41
72
0
29 Oct 2018
Rademacher Complexity for Adversarially Robust Generalization
Dong Yin
Kannan Ramchandran
Peter L. Bartlett
AAML
89
260
0
29 Oct 2018
The Curse of Concentration in Robust Learning: Evasion and Poisoning Attacks from Concentration of Measure
Saeed Mahloujifar
Dimitrios I. Diochnos
Mohammad Mahmoody
54
151
0
09 Sep 2018
Are adversarial examples inevitable?
Ali Shafahi
Wenjie Huang
Christoph Studer
Soheil Feizi
Tom Goldstein
SILM
64
282
0
06 Sep 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
73
228
0
18 Jul 2018
Scaling provable adversarial defenses
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
76
448
0
31 May 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
102
1,778
0
30 May 2018
Adversarial examples from computational constraints
Sébastien Bubeck
Eric Price
Ilya P. Razenshteyn
AAML
108
231
0
25 May 2018
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
60
370
0
23 May 2018
Adversarial vulnerability for any classifier
Alhussein Fawzi
Hamza Fawzi
Omar Fawzi
AAML
76
250
0
23 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
219
3,185
0
01 Feb 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
105
968
0
29 Jan 2018
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
125
1,409
0
08 Dec 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
123
1,501
0
02 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
125
863
0
29 Oct 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
283
8,878
0
25 Aug 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
148
1,255
0
27 Jun 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
304
12,063
0
19 Jun 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
261
8,552
0
16 Aug 2016
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
92
3,072
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,049
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
1