Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.12173
Cited By
On the Inductive Bias of Neural Tangent Kernels
29 May 2019
A. Bietti
Julien Mairal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Inductive Bias of Neural Tangent Kernels"
43 / 43 papers shown
Title
Generalization through variance: how noise shapes inductive biases in diffusion models
John J. Vastola
DiffM
416
4
0
16 Apr 2025
Inductive Gradient Adjustment For Spectral Bias In Implicit Neural Representations
Kexuan Shi
Hai Chen
Leheng Zhang
Shuhang Gu
72
1
0
17 Oct 2024
Geometric Inductive Biases of Deep Networks: The Role of Data and Architecture
Sajad Movahedi
Antonio Orvieto
Seyed-Mohsen Moosavi-Dezfooli
AI4CE
AAML
478
0
0
15 Oct 2024
On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
Hubert Leterme
K. Polisano
V. Perrier
Alahari Karteek
FAtt
93
2
0
19 Sep 2022
Implicit Kinematic Policies: Unifying Joint and Cartesian Action Spaces in End-to-End Robot Learning
Aditya Ganapathi
Peter R. Florence
Jacob Varley
Kaylee Burns
Ken Goldberg
Andy Zeng
166
16
0
03 Mar 2022
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
67
777
0
26 Jun 2019
The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies
Ronen Basri
David Jacobs
Yoni Kasten
S. Kritchman
64
218
0
02 Jun 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
80
389
0
30 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
45
243
0
27 Apr 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
209
922
0
26 Apr 2019
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
66
182
0
01 Apr 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
196
1,099
0
18 Feb 2019
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
68
278
0
16 Feb 2019
How do infinite width bounded norm networks look in function space?
Pedro H. P. Savarese
Itay Evron
Daniel Soudry
Nathan Srebro
72
165
0
13 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
137
287
0
13 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
185
971
0
24 Jan 2019
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
102
833
0
19 Dec 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
174
448
0
21 Nov 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
179
769
0
12 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
238
1,462
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
188
1,134
0
09 Nov 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
54
309
0
11 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
210
1,270
0
04 Oct 2018
Deep Convolutional Networks as shallow Gaussian Processes
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDL
UQCV
102
270
0
16 Aug 2018
Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data
Yuanzhi Li
Yingyu Liang
MLT
212
653
0
03 Aug 2018
Just Interpolate: Kernel "Ridgeless" Regression Can Generalize
Tengyuan Liang
Alexander Rakhlin
60
353
0
01 Aug 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
252
3,194
0
20 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
200
735
0
24 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
141
559
0
30 Apr 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
81
858
0
18 Apr 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
57
418
0
05 Feb 2018
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
115
1,093
0
01 Nov 2017
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
147
916
0
27 Oct 2017
Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm
Simon Fischer
Ingo Steinwart
166
151
0
23 Feb 2017
Diverse Neural Network Learns True Target Functions
Bo Xie
Yingyu Liang
Le Song
163
137
0
09 Nov 2016
End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
Julien Mairal
SSL
62
130
0
20 May 2016
Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity
Amit Daniely
Roy Frostig
Y. Singer
156
343
0
18 Feb 2016
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
68
331
0
14 Feb 2016
Breaking the Curse of Dimensionality with Convex Neural Networks
Francis R. Bach
176
706
0
30 Dec 2014
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
88
657
0
20 Dec 2014
Convolutional Kernel Networks
Julien Mairal
Piotr Koniusz
Zaïd Harchaoui
Cordelia Schmid
87
380
0
12 Jun 2014
Invariant Scattering Convolution Networks
Joan Bruna
S. Mallat
115
1,275
0
05 Mar 2012
Group Invariant Scattering
S. Mallat
116
988
0
12 Jan 2011
1