Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11427
Cited By
Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness
27 May 2019
Pengzhan Jin
Lu Lu
Yifa Tang
George Karniadakis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness"
14 / 14 papers shown
Title
Understanding Activation Patterns in Artificial Neural Networks by Exploring Stochastic Processes
S. Lehmler
Muhammad Saif-ur-Rehman
Tobias Glasmachers
Ioannis Iossifidis
27
0
0
01 Aug 2023
PDE+: Enhancing Generalization via PDE with Adaptive Distributional Diffusion
Yige Yuan
Bingbing Xu
Bo Lin
Liang Hou
Fei Sun
Huawei Shen
Xueqi Cheng
DiffM
26
4
0
25 May 2023
Learning Functional Transduction
Mathieu Chalvidal
Thomas Serre
Rufin VanRullen
AI4CE
38
2
0
01 Feb 2023
Reliable extrapolation of deep neural operators informed by physics or sparse observations
Min Zhu
Handi Zhang
Anran Jiao
George Karniadakis
Lu Lu
50
91
0
13 Dec 2022
Protecting Split Learning by Potential Energy Loss
Fei Zheng
Chaochao Chen
Lingjuan Lyu
Xinyi Fu
Xing Fu
Weiqiang Wang
Xiaolin Zheng
Jianwei Yin
49
4
0
18 Oct 2022
Certified machine learning: Rigorous a posteriori error bounds for PDE defined PINNs
Birgit Hillebrecht
B. Unger
PINN
18
5
0
07 Oct 2022
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Tao Luo
FaML
33
66
0
19 Jan 2022
Embedding Principle: a hierarchical structure of loss landscape of deep neural networks
Yaoyu Zhang
Yuqing Li
Zhongwang Zhang
Tao Luo
Z. Xu
29
22
0
30 Nov 2021
Approximation capabilities of measure-preserving neural networks
Aiqing Zhu
Pengzhan Jin
Yifa Tang
29
8
0
21 Jun 2021
Adaptive Checkpoint Adjoint Method for Gradient Estimation in Neural ODE
Juntang Zhuang
Nicha Dvornek
Xiaoxiao Li
S. Tatikonda
X. Papademetris
James Duncan
BDL
66
110
0
03 Jun 2020
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
Pengzhan Jin
Zhen Zhang
Aiqing Zhu
Yifa Tang
George Karniadakis
21
21
0
11 Jan 2020
Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
E. Kharazmi
Z. Zhang
George Karniadakis
24
237
0
27 Nov 2019
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
52
1,489
0
10 Jul 2019
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,892
0
15 Sep 2016
1