Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11261
Cited By
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent
27 May 2019
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent"
35 / 35 papers shown
Title
A stochastic gradient descent algorithm with random search directions
Eméric Gbaguidi
ODL
80
0
0
25 Mar 2025
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
53
0
0
03 Jun 2024
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
A. Maranjyan
Peter Richtárik
49
4
0
07 Mar 2024
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
P. Ostroukhov
Aigerim Zhumabayeva
Chulu Xiang
Alexander Gasnikov
Martin Takáč
Dmitry Kamzolov
ODL
46
2
0
07 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
Siqi Zhang
S. Choudhury
Sebastian U. Stich
Nicolas Loizou
FedML
19
3
0
08 Jun 2023
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
23
18
0
04 Jun 2023
Error Feedback Shines when Features are Rare
Peter Richtárik
Elnur Gasanov
Konstantin Burlachenko
38
2
0
24 May 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
32
21
0
10 Apr 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
37
6
0
09 Jan 2023
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Xu Cai
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
36
14
0
09 Dec 2022
BALPA: A Balanced Primal-Dual Algorithm for Nonsmooth Optimization with Application to Distributed Optimization
Luyao Guo
Jinde Cao
Xinli Shi
Shaofu Yang
15
0
0
06 Dec 2022
On the effectiveness of partial variance reduction in federated learning with heterogeneous data
Bo-wen Li
Mikkel N. Schmidt
T. S. Alstrøm
Sebastian U. Stich
FedML
37
9
0
05 Dec 2022
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
A. Maranjyan
M. Safaryan
Peter Richtárik
34
13
0
28 Oct 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
40
2
0
12 Oct 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
42
31
0
29 Aug 2022
Tackling Data Heterogeneity: A New Unified Framework for Decentralized SGD with Sample-induced Topology
Yan Huang
Ying Sun
Zehan Zhu
Changzhi Yan
Jinming Xu
FedML
30
15
0
08 Jul 2022
Federated Optimization Algorithms with Random Reshuffling and Gradient Compression
Abdurakhmon Sadiev
Grigory Malinovsky
Eduard A. Gorbunov
Igor Sokolov
Ahmed Khaled
Konstantin Burlachenko
Peter Richtárik
FedML
16
21
0
14 Jun 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
27
10
0
08 May 2022
Deep Unlearning via Randomized Conditionally Independent Hessians
Ronak R. Mehta
Sourav Pal
Vikas Singh
Sathya Ravi
MU
27
81
0
15 Apr 2022
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
19
12
0
06 Apr 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
19
49
0
15 Feb 2022
Stochastic Extragradient: General Analysis and Improved Rates
Eduard A. Gorbunov
Hugo Berard
Gauthier Gidel
Nicolas Loizou
22
40
0
16 Nov 2021
Federated Expectation Maximization with heterogeneity mitigation and variance reduction
Aymeric Dieuleveut
G. Fort
Eric Moulines
Geneviève Robin
FedML
31
5
0
03 Nov 2021
FedNL: Making Newton-Type Methods Applicable to Federated Learning
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
33
78
0
05 Jun 2021
PMGT-VR: A decentralized proximal-gradient algorithmic framework with variance reduction
Haishan Ye
Wei Xiong
Tong Zhang
16
16
0
30 Dec 2020
Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
24
26
0
13 Nov 2020
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
37
109
0
03 Nov 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark W. Schmidt
Francis R. Bach
Peter Richtárik
19
111
0
02 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
37
0
0
26 Aug 2020
On stochastic mirror descent with interacting particles: convergence properties and variance reduction
Anastasia Borovykh
N. Kantas
P. Parpas
G. Pavliotis
28
12
0
15 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
39
50
0
08 Jul 2020
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Yan Sun
S. Davidson
MU
25
196
0
26 Jun 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
13
179
0
09 Feb 2020
1