ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.11261
  4. Cited By
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and
  Coordinate Descent

A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent

27 May 2019
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
ArXivPDFHTML

Papers citing "A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent"

35 / 35 papers shown
Title
A stochastic gradient descent algorithm with random search directions
A stochastic gradient descent algorithm with random search directions
Eméric Gbaguidi
ODL
80
0
0
25 Mar 2025
Demystifying SGD with Doubly Stochastic Gradients
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
53
0
0
03 Jun 2024
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
A. Maranjyan
Peter Richtárik
49
4
0
07 Mar 2024
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
P. Ostroukhov
Aigerim Zhumabayeva
Chulu Xiang
Alexander Gasnikov
Martin Takáč
Dmitry Kamzolov
ODL
46
2
0
07 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Communication-Efficient Gradient Descent-Accent Methods for Distributed
  Variational Inequalities: Unified Analysis and Local Updates
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
Siqi Zhang
S. Choudhury
Sebastian U. Stich
Nicolas Loizou
FedML
19
3
0
08 Jun 2023
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
23
18
0
04 Jun 2023
Error Feedback Shines when Features are Rare
Error Feedback Shines when Features are Rare
Peter Richtárik
Elnur Gasanov
Konstantin Burlachenko
38
2
0
24 May 2023
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
32
21
0
10 Apr 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient
  Correction
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
37
6
0
09 Jan 2023
Cyclic Block Coordinate Descent With Variance Reduction for Composite
  Nonconvex Optimization
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Xu Cai
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
36
14
0
09 Dec 2022
BALPA: A Balanced Primal-Dual Algorithm for Nonsmooth Optimization with
  Application to Distributed Optimization
BALPA: A Balanced Primal-Dual Algorithm for Nonsmooth Optimization with Application to Distributed Optimization
Luyao Guo
Jinde Cao
Xinli Shi
Shaofu Yang
15
0
0
06 Dec 2022
On the effectiveness of partial variance reduction in federated learning
  with heterogeneous data
On the effectiveness of partial variance reduction in federated learning with heterogeneous data
Bo-wen Li
Mikkel N. Schmidt
T. S. Alstrøm
Sebastian U. Stich
FedML
37
9
0
05 Dec 2022
GradSkip: Communication-Accelerated Local Gradient Methods with Better
  Computational Complexity
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
A. Maranjyan
M. Safaryan
Peter Richtárik
34
13
0
28 Oct 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum
  Cocoercive Variational Inequalities
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
40
2
0
12 Oct 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point
  Problems: A Survey
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
42
31
0
29 Aug 2022
Tackling Data Heterogeneity: A New Unified Framework for Decentralized
  SGD with Sample-induced Topology
Tackling Data Heterogeneity: A New Unified Framework for Decentralized SGD with Sample-induced Topology
Yan Huang
Ying Sun
Zehan Zhu
Changzhi Yan
Jinming Xu
FedML
30
15
0
08 Jul 2022
Federated Optimization Algorithms with Random Reshuffling and Gradient
  Compression
Federated Optimization Algorithms with Random Reshuffling and Gradient Compression
Abdurakhmon Sadiev
Grigory Malinovsky
Eduard A. Gorbunov
Igor Sokolov
Ahmed Khaled
Konstantin Burlachenko
Peter Richtárik
FedML
16
21
0
14 Jun 2022
Federated Random Reshuffling with Compression and Variance Reduction
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
27
10
0
08 May 2022
Deep Unlearning via Randomized Conditionally Independent Hessians
Deep Unlearning via Randomized Conditionally Independent Hessians
Ronak R. Mehta
Sourav Pal
Vikas Singh
Sathya Ravi
MU
27
81
0
15 Apr 2022
Nonlinear gradient mappings and stochastic optimization: A general
  framework with applications to heavy-tail noise
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
19
12
0
06 Apr 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient
  Methods
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
19
49
0
15 Feb 2022
Stochastic Extragradient: General Analysis and Improved Rates
Stochastic Extragradient: General Analysis and Improved Rates
Eduard A. Gorbunov
Hugo Berard
Gauthier Gidel
Nicolas Loizou
22
40
0
16 Nov 2021
Federated Expectation Maximization with heterogeneity mitigation and
  variance reduction
Federated Expectation Maximization with heterogeneity mitigation and variance reduction
Aymeric Dieuleveut
G. Fort
Eric Moulines
Geneviève Robin
FedML
31
5
0
03 Nov 2021
FedNL: Making Newton-Type Methods Applicable to Federated Learning
FedNL: Making Newton-Type Methods Applicable to Federated Learning
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
33
78
0
05 Jun 2021
PMGT-VR: A decentralized proximal-gradient algorithmic framework with
  variance reduction
PMGT-VR: A decentralized proximal-gradient algorithmic framework with variance reduction
Haishan Ye
Wei Xiong
Tong Zhang
16
16
0
30 Dec 2020
Convergence Properties of Stochastic Hypergradients
Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
24
26
0
13 Nov 2020
Local SGD: Unified Theory and New Efficient Methods
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
37
109
0
03 Nov 2020
Variance-Reduced Methods for Machine Learning
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark W. Schmidt
Francis R. Bach
Peter Richtárik
19
111
0
02 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
37
0
0
26 Aug 2020
On stochastic mirror descent with interacting particles: convergence
  properties and variance reduction
On stochastic mirror descent with interacting particles: convergence properties and variance reduction
Anastasia Borovykh
N. Kantas
P. Parpas
G. Pavliotis
28
12
0
15 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
39
50
0
08 Jul 2020
DeltaGrad: Rapid retraining of machine learning models
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Yan Sun
S. Davidson
MU
25
196
0
26 Jun 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Better Theory for SGD in the Nonconvex World
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
13
179
0
09 Feb 2020
1