Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11213
Cited By
Provable robustness against all adversarial
l
p
l_p
l
p
-perturbations for
p
≥
1
p\geq 1
p
≥
1
27 May 2019
Francesco Croce
Matthias Hein
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Provable robustness against all adversarial $l_p$-perturbations for $p\geq 1$"
20 / 20 papers shown
Title
X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP
Hanxun Huang
Sarah Monazam Erfani
Yige Li
Xingjun Ma
James Bailey
AAML
60
0
0
08 May 2025
A Survey of Neural Network Robustness Assessment in Image Recognition
Jie Wang
Jun Ai
Minyan Lu
Haoran Su
Dan Yu
Yutao Zhang
Junda Zhu
Jingyu Liu
AAML
35
3
0
12 Apr 2024
Optimization and Optimizers for Adversarial Robustness
Hengyue Liang
Buyun Liang
Le Peng
Ying Cui
Tim Mitchell
Ju Sun
AAML
28
5
0
23 Mar 2023
MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
Sihui Dai
Saeed Mahloujifar
Chong Xiang
Vikash Sehwag
Pin-Yu Chen
Prateek Mittal
AAML
OOD
36
7
0
21 Feb 2023
Confidence-aware Training of Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Seojin Kim
Jinwoo Shin
AAML
21
7
0
18 Dec 2022
Multiple Perturbation Attack: Attack Pixelwise Under Different
ℓ
p
\ell_p
ℓ
p
-norms For Better Adversarial Performance
Ngoc N. Tran
Anh Tuan Bui
Dinh Q. Phung
Trung Le
AAML
34
1
0
05 Dec 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
35
4
0
20 Oct 2022
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček
Matthias Hein
AAML
25
11
0
14 Jul 2022
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
54
72
0
26 Mar 2022
The Fundamental Limits of Interval Arithmetic for Neural Networks
M. Mirman
Maximilian Baader
Martin Vechev
32
6
0
09 Dec 2021
Adaptive Image Transformations for Transfer-based Adversarial Attack
Zheng Yuan
Jie Zhang
Shiguang Shan
OOD
24
25
0
27 Nov 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
41
236
0
01 Aug 2021
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
37
66
0
26 Jul 2021
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
Sung Ju Hwang
Jinwoo Shin
AAML
41
57
0
08 Mar 2021
A Comprehensive Evaluation Framework for Deep Model Robustness
Jun Guo
Wei Bao
Jiakai Wang
Yuqing Ma
Xing Gao
Gang Xiao
Aishan Liu
Zehao Zhao
Xianglong Liu
Wenjun Wu
AAML
ELM
38
55
0
24 Jan 2021
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo Li
AAML
38
128
0
09 Sep 2020
ReLU Code Space: A Basis for Rating Network Quality Besides Accuracy
Natalia Shepeleva
Werner Zellinger
Michal Lewandowski
Bernhard A. Moser
25
3
0
20 May 2020
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
Yangqiu Song
AAML
30
35
0
09 Jun 2019
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
251
1,842
0
03 Feb 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
338
5,849
0
08 Jul 2016
1