ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.11190
  4. Cited By
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Model-Agnostic Counterfactual Explanations for Consequential Decisions

27 May 2019
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
ArXivPDFHTML

Papers citing "Model-Agnostic Counterfactual Explanations for Consequential Decisions"

31 / 81 papers shown
Title
Deep Neural Networks and Tabular Data: A Survey
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
27
647
0
05 Oct 2021
Model Explanations via the Axiomatic Causal Lens
Gagan Biradar
Vignesh Viswanathan
Yair Zick
XAI
CML
25
1
0
08 Sep 2021
Improving Visualization Interpretation Using Counterfactuals
Improving Visualization Interpretation Using Counterfactuals
Smiti Kaul
D. Borland
Nan Cao
David Gotz
CML
10
17
0
21 Jul 2021
A Causal Perspective on Meaningful and Robust Algorithmic Recourse
A Causal Perspective on Meaningful and Robust Algorithmic Recourse
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
27
16
0
16 Jul 2021
A Framework and Benchmarking Study for Counterfactual Generating Methods
  on Tabular Data
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
Raphael Mazzine
David Martens
32
33
0
09 Jul 2021
How Well do Feature Visualizations Support Causal Understanding of CNN
  Activations?
How Well do Feature Visualizations Support Causal Understanding of CNN Activations?
Roland S. Zimmermann
Judy Borowski
Robert Geirhos
Matthias Bethge
Thomas S. A. Wallis
Wieland Brendel
FAtt
44
31
0
23 Jun 2021
Exploring Counterfactual Explanations Through the Lens of Adversarial
  Examples: A Theoretical and Empirical Analysis
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis
Martin Pawelczyk
Chirag Agarwal
Shalmali Joshi
Sohini Upadhyay
Himabindu Lakkaraju
AAML
32
51
0
18 Jun 2021
Optimal Counterfactual Explanations in Tree Ensembles
Optimal Counterfactual Explanations in Tree Ensembles
Axel Parmentier
Thibaut Vidal
19
54
0
11 Jun 2021
To trust or not to trust an explanation: using LEAF to evaluate local
  linear XAI methods
To trust or not to trust an explanation: using LEAF to evaluate local linear XAI methods
E. Amparore
Alan Perotti
P. Bajardi
FAtt
17
68
0
01 Jun 2021
Optimal Counterfactual Explanations for Scorecard modelling
Optimal Counterfactual Explanations for Scorecard modelling
Guillermo Navas-Palencia
11
9
0
17 Apr 2021
Consequence-aware Sequential Counterfactual Generation
Consequence-aware Sequential Counterfactual Generation
Philip Naumann
Eirini Ntoutsi
OffRL
17
24
0
12 Apr 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable
  Explanations
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
37
55
0
18 Mar 2021
Counterfactuals and Causability in Explainable Artificial Intelligence:
  Theory, Algorithms, and Applications
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient
  Algorithms
Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient Algorithms
Miguel Á. Carreira-Perpiñán
Suryabhan Singh Hada
CML
AAML
18
33
0
01 Mar 2021
Towards Robust and Reliable Algorithmic Recourse
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
25
108
0
26 Feb 2021
GeCo: Quality Counterfactual Explanations in Real Time
GeCo: Quality Counterfactual Explanations in Real Time
Maximilian Schleich
Zixuan Geng
Yihong Zhang
D. Suciu
46
61
0
05 Jan 2021
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
28
119
0
03 Dec 2020
Why model why? Assessing the strengths and limitations of LIME
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
26
97
0
30 Nov 2020
Declarative Approaches to Counterfactual Explanations for Classification
Declarative Approaches to Counterfactual Explanations for Classification
Leopoldo Bertossi
37
17
0
15 Nov 2020
Optimism in the Face of Adversity: Understanding and Improving Deep
  Learning through Adversarial Robustness
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Instance-based Counterfactual Explanations for Time Series
  Classification
Instance-based Counterfactual Explanations for Time Series Classification
Eoin Delaney
Derek Greene
Mark T. Keane
CML
AI4TS
19
89
0
28 Sep 2020
Beyond Individualized Recourse: Interpretable and Interactive Summaries
  of Actionable Recourses
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
27
11
0
15 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
35
62
0
11 Sep 2020
Model extraction from counterfactual explanations
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
27
51
0
03 Sep 2020
On Counterfactual Explanations under Predictive Multiplicity
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
25
85
0
23 Jun 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
28
178
0
11 Jun 2020
An ASP-Based Approach to Counterfactual Explanations for Classification
An ASP-Based Approach to Counterfactual Explanations for Classification
Leopoldo Bertossi
CML
32
15
0
28 Apr 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
24
337
0
14 Feb 2020
Decisions, Counterfactual Explanations and Strategic Behavior
Decisions, Counterfactual Explanations and Strategic Behavior
Stratis Tsirtsis
Manuel Gomez Rodriguez
27
58
0
11 Feb 2020
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
231
1,837
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
Previous
12