Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11092
Cited By
A Rate-Distortion Framework for Explaining Neural Network Decisions
27 May 2019
Jan Macdonald
S. Wäldchen
Sascha Hauch
Gitta Kutyniok
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Rate-Distortion Framework for Explaining Neural Network Decisions"
12 / 12 papers shown
Title
Prototypical Self-Explainable Models Without Re-training
Srishti Gautam
Ahcène Boubekki
Marina M.-C. Höhne
Michael C. Kampffmeyer
34
2
0
13 Dec 2023
On Interpretable Approaches to Cluster, Classify and Represent Multi-Subspace Data via Minimum Lossy Coding Length based on Rate-Distortion Theory
Kaige Lu
Avraham Chapman
45
0
0
21 Feb 2023
Explaining Image Classifiers with Multiscale Directional Image Representation
Stefan Kolek
Robert Windesheim
Héctor Andrade-Loarca
Gitta Kutyniok
Ron Levie
29
4
0
22 Nov 2022
New Definitions and Evaluations for Saliency Methods: Staying Intrinsic, Complete and Sound
Arushi Gupta
Nikunj Saunshi
Dingli Yu
Kaifeng Lyu
Sanjeev Arora
AAML
FAtt
XAI
31
5
0
05 Nov 2022
Learning Fair Representations via Rate-Distortion Maximization
Somnath Basu Roy Chowdhury
Snigdha Chaturvedi
FaML
8
14
0
31 Jan 2022
Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings
Jan Macdonald
Mathieu Besançon
Sebastian Pokutta
32
11
0
15 Oct 2021
A Rate-Distortion Framework for Explaining Black-box Model Decisions
Stefan Kolek
Duc Anh Nguyen
Ron Levie
Joan Bruna
Gitta Kutyniok
35
15
0
12 Oct 2021
Cartoon Explanations of Image Classifiers
Stefan Kolek
Duc Anh Nguyen
Ron Levie
Joan Bruna
Gitta Kutyniok
FAtt
38
15
0
07 Oct 2021
This looks more like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation
Srishti Gautam
Marina M.-C. Höhne
Stine Hansen
Robert Jenssen
Michael C. Kampffmeyer
27
49
0
27 Aug 2021
Learning Diverse and Discriminative Representations via the Principle of Maximal Coding Rate Reduction
Yaodong Yu
Kwan Ho Ryan Chan
Chong You
Chaobing Song
Yi Ma
SSL
36
190
0
15 Jun 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
51
82
0
17 Mar 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1