ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10988
  4. Cited By
Natural Compression for Distributed Deep Learning
v1v2v3 (latest)

Natural Compression for Distributed Deep Learning

27 May 2019
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
ArXiv (abs)PDFHTML

Papers citing "Natural Compression for Distributed Deep Learning"

36 / 36 papers shown
Title
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
Artavazd Maranjyan
Peter Richtárik
116
5
0
07 Mar 2024
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
138
4
0
01 Aug 2023
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
74
434
0
10 Sep 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed
  Optimization
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
90
323
0
31 May 2019
Communication-Efficient Distributed Blockwise Momentum SGD with
  Error-Feedback
Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback
Shuai Zheng
Ziyue Huang
James T. Kwok
54
115
0
27 May 2019
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass
  Error-Compensated Compression
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
60
220
0
15 May 2019
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
Sai Praneeth Karimireddy
Quentin Rebjock
Sebastian U. Stich
Martin Jaggi
66
502
0
28 Jan 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to
  Fix it
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
51
13
0
27 Jan 2019
Distributed Learning with Compressed Gradient Differences
Distributed Learning with Compressed Gradient Differences
Konstantin Mishchenko
Eduard A. Gorbunov
Martin Takáč
Peter Richtárik
98
201
0
26 Jan 2019
Distributed Learning with Sparse Communications by Identification
Distributed Learning with Sparse Communications by Identification
Dmitry Grishchenko
F. Iutzeler
J. Malick
Massih-Reza Amini
55
19
0
10 Dec 2018
The Convergence of Sparsified Gradient Methods
The Convergence of Sparsified Gradient Methods
Dan Alistarh
Torsten Hoefler
M. Johansson
Sarit Khirirat
Nikola Konstantinov
Cédric Renggli
167
494
0
27 Sep 2018
Sparsified SGD with Memory
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
82
754
0
20 Sep 2018
Distributed learning with compressed gradients
Distributed learning with compressed gradients
Sarit Khirirat
Hamid Reza Feyzmahdavian
M. Johansson
56
84
0
18 Jun 2018
Local SGD Converges Fast and Communicates Little
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
183
1,067
0
24 May 2018
Not All Samples Are Created Equal: Deep Learning with Importance
  Sampling
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
Angelos Katharopoulos
François Fleuret
101
522
0
02 Mar 2018
3LC: Lightweight and Effective Traffic Compression for Distributed
  Machine Learning
3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning
Hyeontaek Lim
D. Andersen
M. Kaminsky
115
70
0
21 Feb 2018
signSGD: Compressed Optimisation for Non-Convex Problems
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedMLODL
101
1,050
0
13 Feb 2018
Deep Gradient Compression: Reducing the Communication Bandwidth for
  Distributed Training
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
141
1,409
0
05 Dec 2017
Gradient Sparsification for Communication-Efficient Distributed
  Optimization
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
90
528
0
26 Oct 2017
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Priya Goyal
Piotr Dollár
Ross B. Girshick
P. Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
3DH
128
3,685
0
08 Jun 2017
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep
  Learning
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
157
990
0
22 May 2017
Sparse Communication for Distributed Gradient Descent
Sparse Communication for Distributed Gradient Descent
Alham Fikri Aji
Kenneth Heafield
66
741
0
17 Apr 2017
Randomized Distributed Mean Estimation: Accuracy vs Communication
Randomized Distributed Mean Estimation: Accuracy vs Communication
Jakub Konecný
Peter Richtárik
FedML
120
102
0
22 Nov 2016
Distributed Mean Estimation with Limited Communication
Distributed Mean Estimation with Limited Communication
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
114
366
0
02 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
309
4,649
0
18 Oct 2016
Quantized Neural Networks: Training Neural Networks with Low Precision
  Weights and Activations
Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations
Itay Hubara
Matthieu Courbariaux
Daniel Soudry
Ran El-Yaniv
Yoshua Bengio
MQ
152
1,867
0
22 Sep 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
775
36,861
0
25 Aug 2016
AIDE: Fast and Communication Efficient Distributed Optimization
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
58
150
0
24 Aug 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Deep Learning with Limited Numerical Precision
Deep Learning with Limited Numerical Precision
Suyog Gupta
A. Agrawal
K. Gopalakrishnan
P. Narayanan
HAI
207
2,049
0
09 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,260
0
22 Dec 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
135
1,828
0
01 Jul 2014
Communication Efficient Distributed Optimization using an Approximate
  Newton-type Method
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
95
555
0
30 Dec 2013
Distributed Coordinate Descent Method for Learning with Big Data
Distributed Coordinate Descent Method for Learning with Big Data
Peter Richtárik
Martin Takáč
191
255
0
08 Oct 2013
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic
  Programming
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
Saeed Ghadimi
Guanghui Lan
ODL
122
1,555
0
22 Sep 2013
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
  Descent
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
201
2,274
0
28 Jun 2011
1