Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.10988
Cited By
v1
v2
v3 (latest)
Natural Compression for Distributed Deep Learning
27 May 2019
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Natural Compression for Distributed Deep Learning"
36 / 36 papers shown
Title
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
Artavazd Maranjyan
Peter Richtárik
116
5
0
07 Mar 2024
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
138
4
0
01 Aug 2023
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
74
434
0
10 Sep 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
90
323
0
31 May 2019
Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback
Shuai Zheng
Ziyue Huang
James T. Kwok
54
115
0
27 May 2019
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
60
220
0
15 May 2019
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
Sai Praneeth Karimireddy
Quentin Rebjock
Sebastian U. Stich
Martin Jaggi
66
502
0
28 Jan 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
51
13
0
27 Jan 2019
Distributed Learning with Compressed Gradient Differences
Konstantin Mishchenko
Eduard A. Gorbunov
Martin Takáč
Peter Richtárik
98
201
0
26 Jan 2019
Distributed Learning with Sparse Communications by Identification
Dmitry Grishchenko
F. Iutzeler
J. Malick
Massih-Reza Amini
55
19
0
10 Dec 2018
The Convergence of Sparsified Gradient Methods
Dan Alistarh
Torsten Hoefler
M. Johansson
Sarit Khirirat
Nikola Konstantinov
Cédric Renggli
167
494
0
27 Sep 2018
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
82
754
0
20 Sep 2018
Distributed learning with compressed gradients
Sarit Khirirat
Hamid Reza Feyzmahdavian
M. Johansson
56
84
0
18 Jun 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
183
1,067
0
24 May 2018
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
Angelos Katharopoulos
François Fleuret
101
522
0
02 Mar 2018
3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning
Hyeontaek Lim
D. Andersen
M. Kaminsky
115
70
0
21 Feb 2018
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
101
1,050
0
13 Feb 2018
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
141
1,409
0
05 Dec 2017
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
90
528
0
26 Oct 2017
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Priya Goyal
Piotr Dollár
Ross B. Girshick
P. Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
3DH
128
3,685
0
08 Jun 2017
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
157
990
0
22 May 2017
Sparse Communication for Distributed Gradient Descent
Alham Fikri Aji
Kenneth Heafield
66
741
0
17 Apr 2017
Randomized Distributed Mean Estimation: Accuracy vs Communication
Jakub Konecný
Peter Richtárik
FedML
120
102
0
22 Nov 2016
Distributed Mean Estimation with Limited Communication
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
114
366
0
02 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
309
4,649
0
18 Oct 2016
Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations
Itay Hubara
Matthieu Courbariaux
Daniel Soudry
Ran El-Yaniv
Yoshua Bengio
MQ
152
1,867
0
22 Sep 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
775
36,861
0
25 Aug 2016
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
58
150
0
24 Aug 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Deep Learning with Limited Numerical Precision
Suyog Gupta
A. Agrawal
K. Gopalakrishnan
P. Narayanan
HAI
207
2,049
0
09 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,260
0
22 Dec 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
135
1,828
0
01 Jul 2014
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
95
555
0
30 Dec 2013
Distributed Coordinate Descent Method for Learning with Big Data
Peter Richtárik
Martin Takáč
191
255
0
08 Oct 2013
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
Saeed Ghadimi
Guanghui Lan
ODL
122
1,555
0
22 Sep 2013
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
201
2,274
0
28 Jun 2011
1