ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10943
  4. Cited By
Distributionally Robust Optimization and Generalization in Kernel
  Methods

Distributionally Robust Optimization and Generalization in Kernel Methods

27 May 2019
Matthew Staib
Stefanie Jegelka
ArXivPDFHTML

Papers citing "Distributionally Robust Optimization and Generalization in Kernel Methods"

20 / 20 papers shown
Title
Evaluating Model Performance Under Worst-case Subpopulations
Evaluating Model Performance Under Worst-case Subpopulations
Mike Li
Hongseok Namkoong
Shangzhou Xia
45
17
0
01 Jul 2024
Rejection via Learning Density Ratios
Rejection via Learning Density Ratios
Alexander Soen
Hisham Husain
Philip Schulz
Vu-Linh Nguyen
52
2
0
29 May 2024
FedDRO: Federated Compositional Optimization for Distributionally Robust
  Learning
FedDRO: Federated Compositional Optimization for Distributionally Robust Learning
Prashant Khanduri
Chengyin Li
Rafi Ibn Sultan
Yao Qiang
Joerg Kliewer
Dongxiao Zhu
39
0
0
21 Nov 2023
A Convex Framework for Confounding Robust Inference
A Convex Framework for Confounding Robust Inference
Kei Ishikawa
Naio He
Takafumi Kanamori
OffRL
17
0
0
21 Sep 2023
Diagnosing Model Performance Under Distribution Shift
Diagnosing Model Performance Under Distribution Shift
Tiffany Cai
Hongseok Namkoong
Steve Yadlowsky
37
27
0
03 Mar 2023
Online Kernel CUSUM for Change-Point Detection
Online Kernel CUSUM for Change-Point Detection
S. Wei
Yao Xie
27
11
0
28 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
Tikhonov Regularization is Optimal Transport Robust under Martingale
  Constraints
Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints
Jiajin Li
Si-Jian Lin
Jose H. Blanchet
Viet Anh Nguyen
OOD
47
11
0
04 Oct 2022
Distributionally Robust Bayesian Optimization with $\varphi$-divergences
Distributionally Robust Bayesian Optimization with φ\varphiφ-divergences
Hisham Husain
Vu-Linh Nguyen
Anton Van Den Hengel
40
13
0
04 Mar 2022
Minimax risk classifiers with 0-1 loss
Minimax risk classifiers with 0-1 loss
Santiago Mazuelas
Mauricio Romero
Peter Grünwald
32
6
0
17 Jan 2022
Human Imperceptible Attacks and Applications to Improve Fairness
Human Imperceptible Attacks and Applications to Improve Fairness
Xinru Hua
Huanzhong Xu
Jose H. Blanchet
V. Nguyen
AAML
19
3
0
30 Nov 2021
Sinkhorn Distributionally Robust Optimization
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
46
35
0
24 Sep 2021
A Note on Optimizing Distributions using Kernel Mean Embeddings
A Note on Optimizing Distributions using Kernel Mean Embeddings
Boris Muzellec
Francis R. Bach
Alessandro Rudi
11
4
0
18 Jun 2021
Algorithmic Bias and Data Bias: Understanding the Relation between
  Distributionally Robust Optimization and Data Curation
Algorithmic Bias and Data Bias: Understanding the Relation between Distributionally Robust Optimization and Data Curation
Agnieszka Słowik
Léon Bottou
FaML
43
19
0
17 Jun 2021
Adversarially Robust Kernel Smoothing
Adversarially Robust Kernel Smoothing
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
28
7
0
16 Feb 2021
Two-sample Test using Projected Wasserstein Distance
Two-sample Test using Projected Wasserstein Distance
Jie Wang
Rui Gao
Yao Xie
19
19
0
22 Oct 2020
Distributionally Robust Losses for Latent Covariate Mixtures
Distributionally Robust Losses for Latent Covariate Mixtures
John C. Duchi
Tatsunori Hashimoto
Hongseok Namkoong
15
79
0
28 Jul 2020
Distributionally Robust Bayesian Optimization
Distributionally Robust Bayesian Optimization
Johannes Kirschner
Ilija Bogunovic
Stefanie Jegelka
Andreas Krause
27
77
0
20 Feb 2020
Adaptive Sampling for Stochastic Risk-Averse Learning
Adaptive Sampling for Stochastic Risk-Averse Learning
Sebastian Curi
Kfir Y. Levy
Stefanie Jegelka
Andreas Krause
24
51
0
28 Oct 2019
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
107
324
0
09 Feb 2016
1