Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.10936
Cited By
Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback
27 May 2019
Shuai Zheng
Ziyue Huang
James T. Kwok
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback"
26 / 26 papers shown
Title
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
59
0
0
11 Mar 2025
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
42
0
0
11 Nov 2024
GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training
S. Tyagi
Martin Swany
35
4
0
20 May 2023
Sparse-SignSGD with Majority Vote for Communication-Efficient Distributed Learning
Chanho Park
Namyoon Lee
FedML
35
3
0
15 Feb 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
37
19
0
01 Feb 2023
Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
Xiaoyun Li
Ping Li
FedML
39
4
0
25 Nov 2022
Communication-Efficient Adam-Type Algorithms for Distributed Data Mining
Wenhan Xian
Feihu Huang
Heng-Chiao Huang
FedML
35
0
0
14 Oct 2022
Downlink Compression Improves TopK Sparsification
William Zou
H. Sterck
Jun Liu
21
0
0
30 Sep 2022
Energy and Spectrum Efficient Federated Learning via High-Precision Over-the-Air Computation
Liang Li
Chenpei Huang
Dian Shi
Hao Wang
Xiangwei Zhou
Minglei Shu
Miao Pan
FedML
52
9
0
15 Aug 2022
Efficient-Adam: Communication-Efficient Distributed Adam
Congliang Chen
Li Shen
Wei Liu
Zhi-Quan Luo
34
19
0
28 May 2022
Collaborative Learning over Wireless Networks: An Introductory Overview
Emre Ozfatura
Deniz Gunduz
H. Vincent Poor
30
11
0
07 Dec 2021
Comfetch: Federated Learning of Large Networks on Constrained Clients via Sketching
Tahseen Rabbani
Brandon Yushan Feng
Marco Bornstein
Kyle Rui Sang
Yifan Yang
Arjun Rajkumar
A. Varshney
Furong Huang
FedML
64
2
0
17 Sep 2021
ErrorCompensatedX: error compensation for variance reduced algorithms
Hanlin Tang
Yao Li
Ji Liu
Ming Yan
32
10
0
04 Aug 2021
Rethinking gradient sparsification as total error minimization
Atal Narayan Sahu
Aritra Dutta
A. Abdelmoniem
Trambak Banerjee
Marco Canini
Panos Kalnis
50
56
0
02 Aug 2021
DP-SIGNSGD: When Efficiency Meets Privacy and Robustness
Lingjuan Lyu
FedML
AAML
27
19
0
11 May 2021
Learned Gradient Compression for Distributed Deep Learning
L. Abrahamyan
Yiming Chen
Giannis Bekoulis
Nikos Deligiannis
40
46
0
16 Mar 2021
On the Utility of Gradient Compression in Distributed Training Systems
Saurabh Agarwal
Hongyi Wang
Shivaram Venkataraman
Dimitris Papailiopoulos
41
46
0
28 Feb 2021
1-bit Adam: Communication Efficient Large-Scale Training with Adam's Convergence Speed
Hanlin Tang
Shaoduo Gan
A. A. Awan
Samyam Rajbhandari
Conglong Li
Xiangru Lian
Ji Liu
Ce Zhang
Yuxiong He
AI4CE
45
84
0
04 Feb 2021
Time-Correlated Sparsification for Communication-Efficient Federated Learning
Emre Ozfatura
Kerem Ozfatura
Deniz Gunduz
FedML
43
47
0
21 Jan 2021
Auto-weighted Robust Federated Learning with Corrupted Data Sources
Shenghui Li
Edith C.H. Ngai
Fanghua Ye
Thiemo Voigt
FedML
27
28
0
14 Jan 2021
FetchSGD: Communication-Efficient Federated Learning with Sketching
D. Rothchild
Ashwinee Panda
Enayat Ullah
Nikita Ivkin
Ion Stoica
Vladimir Braverman
Joseph E. Gonzalez
Raman Arora
FedML
33
361
0
15 Jul 2020
Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees
Richeng Jin
Yufan Huang
Xiaofan He
H. Dai
Tianfu Wu
FedML
27
62
0
25 Feb 2020
Understanding Top-k Sparsification in Distributed Deep Learning
Shaoshuai Shi
Xiaowen Chu
Ka Chun Cheung
Simon See
30
95
0
20 Nov 2019
Layer-wise Adaptive Gradient Sparsification for Distributed Deep Learning with Convergence Guarantees
Shaoshuai Shi
Zhenheng Tang
Qiang-qiang Wang
Kaiyong Zhao
Xiaowen Chu
19
22
0
20 Nov 2019
High-Dimensional Stochastic Gradient Quantization for Communication-Efficient Edge Learning
Yuqing Du
Sheng Yang
Kaibin Huang
35
99
0
09 Oct 2019
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
21
151
0
27 May 2019
1