ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10607
  4. Cited By
Average Individual Fairness: Algorithms, Generalization and Experiments

Average Individual Fairness: Algorithms, Generalization and Experiments

25 May 2019
Michael Kearns
Aaron Roth
Saeed Sharifi-Malvajerdi
    FaML
    FedML
ArXivPDFHTML

Papers citing "Average Individual Fairness: Algorithms, Generalization and Experiments"

48 / 48 papers shown
Title
Rethinking Fair Graph Neural Networks from Re-balancing
Rethinking Fair Graph Neural Networks from Re-balancing
Zhixun Li
Yushun Dong
Qiang Liu
Jeffrey Xu Yu
31
7
0
16 Jul 2024
Enrolment-based personalisation for improving individual-level fairness
  in speech emotion recognition
Enrolment-based personalisation for improving individual-level fairness in speech emotion recognition
Andreas Triantafyllopoulos
Björn Schuller
27
1
0
10 Jun 2024
Towards Explainability and Fairness in Swiss Judgement Prediction:
  Benchmarking on a Multilingual Dataset
Towards Explainability and Fairness in Swiss Judgement Prediction: Benchmarking on a Multilingual Dataset
Santosh T.Y.S.S
Nina Baumgartner
Matthias Sturmer
Matthias Grabmair
Joel Niklaus
ELM
AILaw
31
6
0
26 Feb 2024
Certification of Distributional Individual Fairness
Certification of Distributional Individual Fairness
Matthew Wicker
Vihari Piratla
Adrian Weller
19
1
0
20 Nov 2023
Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda
  for Developing Practical Guidelines and Tools
Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda for Developing Practical Guidelines and Tools
Maximilian Schambach
Rakshit Naidu
Rayid Ghani
Kit T. Rodolfa
Daniel E. Ho
Hoda Heidari
FaML
35
14
0
29 Sep 2023
Monitoring Algorithmic Fairness under Partial Observations
Monitoring Algorithmic Fairness under Partial Observations
T. Henzinger
Konstantin Kueffner
Kaushik Mallik
MLAU
25
2
0
01 Aug 2023
Algorithms, Incentives, and Democracy
Algorithms, Incentives, and Democracy
E. M. Penn
John W. Patty
FaML
24
2
0
05 Jul 2023
FFPDG: Fast, Fair and Private Data Generation
FFPDG: Fast, Fair and Private Data Generation
Weijie Xu
Jinjin Zhao
Francis Iannacci
Bo Wang
20
11
0
30 Jun 2023
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods
Xiaotian Han
Jianfeng Chi
Yu Chen
Qifan Wang
Han Zhao
Na Zou
Xia Hu
44
25
0
15 Jun 2023
Monitoring Algorithmic Fairness
Monitoring Algorithmic Fairness
T. Henzinger
Mahyar Karimi
Konstantin Kueffner
Kaushik Mallik
FaML
21
6
0
25 May 2023
ACROCPoLis: A Descriptive Framework for Making Sense of Fairness
ACROCPoLis: A Descriptive Framework for Making Sense of Fairness
Andrea Aler Tubella
Dimitri Coelho Mollo
Adam Dahlgren Lindstrom
Hannah Devinney
Virginia Dignum
...
Anna Jonsson
T. Kampik
Tom Lenaerts
Julian Alfredo Mendez
J. Nieves
17
8
0
19 Apr 2023
Achieving Counterfactual Fairness with Imperfect Structural Causal Model
Achieving Counterfactual Fairness with Imperfect Structural Causal Model
Tri Dung Duong
Qian Li
Guandong Xu
22
2
0
26 Mar 2023
From Utilitarian to Rawlsian Designs for Algorithmic Fairness
From Utilitarian to Rawlsian Designs for Algorithmic Fairness
Daniel E. Rigobon
FaML
20
1
0
07 Feb 2023
Manifestations of Xenophobia in AI Systems
Manifestations of Xenophobia in AI Systems
Nenad Tomašev
J. L. Maynard
Iason Gabriel
24
9
0
15 Dec 2022
Learning Antidote Data to Individual Unfairness
Learning Antidote Data to Individual Unfairness
Peizhao Li
Ethan Xia
Hongfu Liu
FedML
FaML
17
9
0
29 Nov 2022
Fair and Optimal Classification via Post-Processing
Fair and Optimal Classification via Post-Processing
Ruicheng Xian
Lang Yin
Han Zhao
FaML
16
30
0
03 Nov 2022
Systematic Evaluation of Predictive Fairness
Systematic Evaluation of Predictive Fairness
Xudong Han
Aili Shen
Trevor Cohn
Timothy Baldwin
Lea Frermann
26
7
0
17 Oct 2022
Omnipredictors for Constrained Optimization
Omnipredictors for Constrained Optimization
Lunjia Hu
Inbal Livni-Navon
Omer Reingold
Chutong Yang
16
14
0
15 Sep 2022
Fairness in Forecasting of Observations of Linear Dynamical Systems
Fairness in Forecasting of Observations of Linear Dynamical Systems
Quan Zhou
Jakub Mareˇcek
Robert Shorten
AI4TS
32
5
0
12 Sep 2022
Metric-Fair Classifier Derandomization
Metric-Fair Classifier Derandomization
Jimmy Wu
Yatong Chen
Yang Liu
FaML
56
5
0
15 Jun 2022
What-is and How-to for Fairness in Machine Learning: A Survey,
  Reflection, and Perspective
What-is and How-to for Fairness in Machine Learning: A Survey, Reflection, and Perspective
Zeyu Tang
Jiji Zhang
Kun Zhang
FaML
25
26
0
08 Jun 2022
Metrizing Fairness
Metrizing Fairness
Yves Rychener
Bahar Taşkesen
Daniel Kuhn
FaML
36
4
0
30 May 2022
Optimising Equal Opportunity Fairness in Model Training
Optimising Equal Opportunity Fairness in Model Training
Aili Shen
Xudong Han
Trevor Cohn
Timothy Baldwin
Lea Frermann
FaML
21
28
0
05 May 2022
A Fair Empirical Risk Minimization with Generalized Entropy
A Fair Empirical Risk Minimization with Generalized Entropy
Young-Hwan Jin
Jio Gim
Tae-Jin Lee
Young-Joo Suh
FaML
16
1
0
24 Feb 2022
Learning fair representation with a parametric integral probability
  metric
Learning fair representation with a parametric integral probability metric
Dongha Kim
Kunwoong Kim
Insung Kong
Ilsang Ohn
Yongdai Kim
FaML
17
16
0
07 Feb 2022
Learning Fair Node Representations with Graph Counterfactual Fairness
Learning Fair Node Representations with Graph Counterfactual Fairness
Jing Ma
Ruocheng Guo
Mengting Wan
Longqi Yang
Aidong Zhang
Jundong Li
FaML
12
78
0
10 Jan 2022
Unified Group Fairness on Federated Learning
Unified Group Fairness on Federated Learning
Fengda Zhang
Kun Kuang
Yuxuan Liu
Long Chen
Chao-Xiang Wu
Fei Wu
Jiaxun Lu
Yunfeng Shao
Jun Xiao
FedML
57
20
0
09 Nov 2021
A survey on datasets for fairness-aware machine learning
A survey on datasets for fairness-aware machine learning
Tai Le Quy
Arjun Roy
Vasileios Iosifidis
Wenbin Zhang
Eirini Ntoutsi
FaML
11
240
0
01 Oct 2021
Amazon SageMaker Clarify: Machine Learning Bias Detection and
  Explainability in the Cloud
Amazon SageMaker Clarify: Machine Learning Bias Detection and Explainability in the Cloud
Michaela Hardt
Xiaoguang Chen
Xiaoyi Cheng
Michele Donini
J. Gelman
...
Muhammad Bilal Zafar
Sanjiv Ranjan Das
Kevin Haas
Tyler Hill
K. Kenthapadi
ELM
FaML
25
42
0
07 Sep 2021
Subgroup Fairness in Two-Sided Markets
Subgroup Fairness in Two-Sided Markets
Quan-Gen Zhou
Jakub Mareˇcek
Robert Shorten
17
2
0
04 Jun 2021
Pareto Efficient Fairness in Supervised Learning: From Extraction to
  Tracing
Pareto Efficient Fairness in Supervised Learning: From Extraction to Tracing
Mohammad Mahdi Kamani
R. Forsati
J. Z. Wang
M. Mahdavi
FaML
11
11
0
04 Apr 2021
Individually Fair Gradient Boosting
Individually Fair Gradient Boosting
Alexander Vargo
Fan Zhang
Mikhail Yurochkin
Yuekai Sun
FaML
FedML
16
15
0
31 Mar 2021
An Empirical Framework for Domain Generalization in Clinical Settings
An Empirical Framework for Domain Generalization in Clinical Settings
Haoran Zhang
Natalie Dullerud
Laleh Seyyed-Kalantari
Q. Morris
Shalmali Joshi
Marzyeh Ghassemi
OOD
AI4CE
24
59
0
20 Mar 2021
Lexicographically Fair Learning: Algorithms and Generalization
Lexicographically Fair Learning: Algorithms and Generalization
Emily Diana
Wesley Gill
Ira Globus-Harris
Michael Kearns
Aaron Roth
Saeed Sharifi-Malvajerdi
FedML
FaML
65
9
0
16 Feb 2021
Removing biased data to improve fairness and accuracy
Removing biased data to improve fairness and accuracy
Sahil Verma
Michael Ernst
René Just
FaML
14
24
0
05 Feb 2021
Controllable Guarantees for Fair Outcomes via Contrastive Information
  Estimation
Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation
Umang Gupta
Aaron Ferber
B. Dilkina
Greg Ver Steeg
20
53
0
11 Jan 2021
Learning Fair Policies in Decentralized Cooperative Multi-Agent
  Reinforcement Learning
Learning Fair Policies in Decentralized Cooperative Multi-Agent Reinforcement Learning
Matthieu Zimmer
Claire Glanois
Umer Siddique
Paul Weng
OffRL
15
58
0
17 Dec 2020
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained
  Classification Problems
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems
N. Sohoni
Jared A. Dunnmon
Geoffrey Angus
Albert Gu
Christopher Ré
18
240
0
25 Nov 2020
Beyond Individual and Group Fairness
Beyond Individual and Group Fairness
Pranjal Awasthi
Corinna Cortes
Yishay Mansour
M. Mohri
FaML
18
22
0
21 Aug 2020
Moment Multicalibration for Uncertainty Estimation
Moment Multicalibration for Uncertainty Estimation
Christopher Jung
Changhwa Lee
Mallesh M. Pai
Aaron Roth
R. Vohra
UQCV
10
64
0
18 Aug 2020
Ensuring Fairness Beyond the Training Data
Ensuring Fairness Beyond the Training Data
Debmalya Mandal
Samuel Deng
Suman Jana
Jeannette M. Wing
Daniel J. Hsu
FaML
OOD
11
58
0
12 Jul 2020
Individual Calibration with Randomized Forecasting
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
6
57
0
18 Jun 2020
Fairness in Forecasting and Learning Linear Dynamical Systems
Fairness in Forecasting and Learning Linear Dynamical Systems
Quan-Gen Zhou
Jakub Mareˇcek
Robert Shorten
AI4TS
24
7
0
12 Jun 2020
A Notion of Individual Fairness for Clustering
A Notion of Individual Fairness for Clustering
Matthäus Kleindessner
Pranjal Awasthi
Jamie Morgenstern
FaML
17
30
0
08 Jun 2020
On the Fairness of Randomized Trials for Recommendation with Heterogeneous Demographics and Beyond
Zifeng Wang
Xi Chen
Rui Wen
Shao-Lun Huang
6
1
0
25 Jan 2020
Kernel Dependence Regularizers and Gaussian Processes with Applications
  to Algorithmic Fairness
Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness
Zhu Li
Adrián Pérez-Suay
Gustau Camps-Valls
Dino Sejdinovic
FaML
10
21
0
11 Nov 2019
Preference-Informed Fairness
Preference-Informed Fairness
Michael P. Kim
Aleksandra Korolova
G. Rothblum
G. Yona
FaML
15
41
0
03 Apr 2019
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,082
0
24 Oct 2016
1