ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10549
42
3
v1v2 (latest)

The variational infomax autoencoder

25 May 2019
Vincenzo Crescimanna
Bruce P. Graham
    DRL
ArXiv (abs)PDFHTML
Abstract

We propose the Variational InfoMax AutoEncoder (VIMAE), a method to train a generative model, maximizing the variational lower bound of the mutual information between the visible data and the hidden representation, maintaining bounded the capacity of the network. In the paper we investigate the capacity role in a neural network and deduce that a small capacity network tends to learn a more robust and disentangled representation than an high capacity one. Such observations are confirmed by the computational experiments.

View on arXiv
Comments on this paper